19 research outputs found

    Twenty-Four-Hour Central (Aortic) Systolic Blood Pressure: Reference Values and Dipping Patterns in Untreated Individuals.

    Get PDF
    Central (aortic) systolic blood pressure (cSBP) is the pressure seen by the heart, the brain, and the kidneys. If properly measured, cSBP is closer associated with hypertension-mediated organ damage and prognosis, as compared with brachial SBP (bSBP). We investigated 24-hour profiles of bSBP and cSBP, measured simultaneously using Mobilograph devices, in 2423 untreated adults (1275 women; age, 18-94 years), free from overt cardiovascular disease, aiming to develop reference values and to analyze daytime-nighttime variability. Central SBP was assessed, using brachial waveforms, calibrated with mean arterial pressure (MAP)/diastolic BP (cSBPMAP/DBPcal), or bSBP/diastolic blood pressure (cSBPSBP/DBPcal), and a validated transfer function, resulting in 144 509 valid brachial and 130 804 valid central measurements. Averaged 24-hour, daytime, and nighttime brachial BP across all individuals was 124/79, 126/81, and 116/72 mm Hg, respectively. Averaged 24-hour, daytime, and nighttime values for cSBPMAP/DBPcal were 128, 128, and 125 mm Hg and 115, 117, and 107 mm Hg for cSBPSBP/DBPcal, respectively. We pragmatically propose as upper normal limit for 24-hour cSBPMAP/DBPcal 135 mm Hg and for 24-hour cSBPSBP/DBPcal 120 mm Hg. bSBP dipping (nighttime-daytime/daytime SBP) was -10.6 % in young participants and decreased with increasing age. Central SBPSBP/DBPcal dipping was less pronounced (-8.7% in young participants). In contrast, cSBPMAP/DBPcal dipping was completely absent in the youngest age group and less pronounced in all other participants. These data may serve for comparison in various diseases and have potential implications for refining hypertension diagnosis and management. The different dipping behavior of bSBP versus cSBP requires further investigation

    Ventilatory Response to Hypoxia during Endotoxemia in Young Rats: Role of Nitric Oxide

    No full text
    Administration of Escherichia coli endotoxin attenuates the ventilatory response to hypoxia (VRH) in newborn piglets, but the mechanisms responsible for this depression are not clearly understood. Nitric oxide (NO) production increases during sepsis and elevated NO levels can inhibit carotid body function. The role of endothelial NO on the VRH during endotoxemia was evaluated in 26 young rats. Minute ventilation (VE) and oxygen consumption (VO2) were measured in room air (RA) and during 30 min of hypoxia (10% O2) before and after E. coli endotoxin administration. During endotoxemia, animals received placebo (PL, n = 8); a nonselective nitric oxide synthase (NOS) inhibitor (NG-nitro-L-arginine methyl ester, L-NAME, n = 9), or a neuronal NOS (nNOS) inhibitor (7-nitroindazole, 7-NI, n = 9). During endotoxemia, a larger increase in VE was observed only during the first min of hypoxia in the L-NAME group when compared with PL or 7-NI (p < 0.001). VRH was similar in the PL and 7-NI groups. A larger decrease in VO2 at 30 min of hypoxia was observed in L-NAME and 7-NI groups when compared with PL (p < 0.03). These data demonstrate that the attenuation of the early VRH during endotoxemia is in part mediated by an inhibitory effect of endothelial NO on the respiratory control mechanisms
    corecore