2,070 research outputs found

    Handbook for the estimation of microwave propagation effects: Link calculations for earth-space paths (path loss and noise estimation)

    Get PDF
    A single model for a standard of comparison for other models when dealing with rain attenuation problems in system design and experimentation is proposed. Refinements to the Global Rain Production Model are incorporated. Path loss and noise estimation procedures as the basic input to systems design for earth-to-space microwave links operating at frequencies from 1 to 300 GHz are provided. Topics covered include gaseous absorption, attenuation by rain, ionospheric and tropospheric scintillation, low elevation angle effects, radome attenuation, diversity schemes, link calculation, and receiver noise emission by atmospheric gases, rain, and antenna contributions

    Laboratory guide to early life history stages of northeast Pacific fishes

    Get PDF
    This laboratory guide presents taxonomic information on eggs and larvae of fishes of the Northeast Pacific Ocean (north of California) and the eastern Bering Sea. Included are early-life-history series, illustrations, and comparative descriptions of 232 species expected to spawn here, out of a total 627 species known to occur in marine waters of this area. Meristic and general life-history data are included, as well as diagnostic characters to help identify eggs and larvae. Most of this information has been gleaned from literature, with the addition of 200 previously unpublished illustrations. (PDF file contains 654 pages.

    Can we see defects in capacitance measurements of thin-film solar cells?

    Get PDF
    Thermal admittance spectroscopy and capacitance-voltage measurements are well established techniques to study recombination-active deep defect levels and determine the shallow dopant concentration in photovoltaic absorbers. Applied to thin-film solar cells or any device stack consisting of multiple layers, interpretation of these capacitance-based techniques is ambiguous at best. We demonstrate how to assess electrical measurements of thin-film devices and develop a range of criteria that allow to estimate whether deep defects could consistently explain a given capacitance measurement. We show that a broad parameter space, achieved by exploiting bias voltage, time, and illumination as additional experimental parameters in admittance spectroscopy, helps to distinguish between deep defects and capacitive contributions from transport barriers or additional layers in the device stack. On the example of Cu(In,Ga)Se2 thin-film solar cells, we show that slow trap states are indeed present but cannot be resolved in typical admittance spectra. We explain the common N1 signature by the presence of a capacitive barrier layer and show that the shallow net dopant concentration is not distributed uniformly within the depth of the absorber

    Comparison of experimental and theoretical gain-current relations in GaInP quantum well lasers

    Get PDF
    The authors compare the results of a microscopic laser theory with gain and recombination currents obtained from experimental spontaneous emission spectra. The calculated absorption spectrum is first matched to that measured on a laser, ensuring that the quasi-Fermi levels for the calculation and the experiment (spontaneous emission and gain) are directly related. This allows one to determine the inhomogeneous broadening in their experimental samples. The only other inputs to the theory are literature values of the bulk material parameter. The authors then estimate the non-radiative recombination current associated with the well and wave-guide core from a comparison of measured and calculated recombination currents

    Book reviews

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44652/1/10834_2005_Article_BF01081976.pd
    • …
    corecore