1,157 research outputs found
Task l Report: Summary and Evaluation of Water Supply Studies for the Kentucky River Basin
This report provides a review and critique of previous water supply studies for the Kentucky River Basin. The main focus of the review is on the 1990 Harza study, entitled Phase 1 Report: Water Demands and Water Supply Yield and Deficit
Improved Enzymatic Method for Determining Mannitol and its Application to Dog Serum after Mannitol Infusion
Peer Reviewe
Water Use Estimation and Forecasting for the Kentucky River Basin: A Preliminary Draft Report
We estimate aggregate monthly water use for summer, peak demand and nonsummer off-peak demand periods for the Kentucky River Basin. Using Kentucky Division of Water use data, U.S. Census data for county demographic and economic conditions, and U.S. Weather Service data for weather conditions we estimate use for the 1970-1993 period. Our model allows for idiosyncratic effects of each of the 27 counties in the sample. We find factors such as population and manufacturing employment effect use and temperature and rainfall in current and preceding months effect use during the summer, peak period. The model predicts well within the sample period Population forecasts. both moderate and high growth series, from the Kentucky Data Center are used along with the manufacturing employment forecasts for water use forecasts. Water use forecasts are made for years out to 2020 under 1930 drought conditions for comparison with water supply estimates. The use estimates are made assuming pricing and other demand management policies remain constant
Diffraction and boundary conditions in semi-classical open billiards
The conductance through open quantum dots or quantum billiards shows
fluctuations, that can be explained as interference between waves following
different paths between the leads of the billiard. We examine such systems by
the use of a semi-classical Green's functions. In this paper we examine how the
choice of boundary conditions at the lead mouths affect the diffraction. We
derive a new formula for the S-matrix element. Finally we compare
semi-classical simulations to quantum mechanical ones, and show that this new
formula yield superior results.Comment: 7 pages, 4 figure
Methods Used to Evaluate Employment and Training Programs in the Past
The authors begin with a thorough assessment of the many nonexperimental employment and training program evaluation techniques based on non-random comparison groups. These techniques typically use econometric methods to estimate the effects of employment and training programs by using comparison groups from non-program external sources. Then, recognizing the inherent drawbacks in these methods, Bell, Orr, Blomquist and Cain respond by reintroducing an evaluation method first implemented in the 1960s, the use of internal comparison groups consisting of nonparticipating program applicants. These groups include withdrawals, screen-outs and no-shows of the programs being evaluated in order to solve the selection bias problem. By applying to the program, say the authors, nonparticipating applicants reveal themselves to have some of the same difficult-to-measure, personal characteristics that inspire participants to seek help in response to their current economic situation. The methodology of this technique is updated, then tested against the random experimental findings derived from a controlled job training experiment, the AFDC Homemaker-Home Health Aide Demonstrations. Encouraging results are presented along with useful suggestions for designers and implementers of all types of program evaluations.https://research.upjohn.org/up_press/1080/thumbnail.jp
Estimation of Thalamocortical and Intracortical Network Models from Joint Thalamic Single-Electrode and Cortical Laminar-Electrode Recordings in the Rat Barrel System
A new method is presented for extraction of population firing-rate models for
both thalamocortical and intracortical signal transfer based on stimulus-evoked
data from simultaneous thalamic single-electrode and cortical recordings using
linear (laminar) multielectrodes in the rat barrel system. Time-dependent
population firing rates for granular (layer 4), supragranular (layer 2/3), and
infragranular (layer 5) populations in a barrel column and the thalamic
population in the homologous barreloid are extracted from the high-frequency
portion (multi-unit activity; MUA) of the recorded extracellular signals. These
extracted firing rates are in turn used to identify population firing-rate
models formulated as integral equations with exponentially decaying coupling
kernels, allowing for straightforward transformation to the more common
firing-rate formulation in terms of differential equations. Optimal model
structures and model parameters are identified by minimizing the deviation
between model firing rates and the experimentally extracted population firing
rates. For the thalamocortical transfer, the experimental data favor a model
with fast feedforward excitation from thalamus to the layer-4 laminar population
combined with a slower inhibitory process due to feedforward and/or recurrent
connections and mixed linear-parabolic activation functions. The extracted
firing rates of the various cortical laminar populations are found to exhibit
strong temporal correlations for the present experimental paradigm, and simple
feedforward population firing-rate models combined with linear or mixed
linear-parabolic activation function are found to provide excellent fits to the
data. The identified thalamocortical and intracortical network models are thus
found to be qualitatively very different. While the thalamocortical circuit is
optimally stimulated by rapid changes in the thalamic firing rate, the
intracortical circuits are low-pass and respond most strongly to slowly varying
inputs from the cortical layer-4 population
Whispering gallery modes in open quantum billiards
The poles of the S-matrix and the wave functions of open 2D quantum billiards
with convex boundary of different shape are calculated by the method of complex
scaling. Two leads are attached to the cavities. The conductance of the
cavities is calculated at energies with one, two and three open channels in
each lead. Bands of overlapping resonance states appear which are localized
along the convex boundary of the cavities and contribute coherently to the
conductance. These bands correspond to the whispering gallery modes appearing
in the classical calculations.Comment: 9 pages, 3 figures in jpg and gif forma
Improved microscopic-macroscopic approach incorporating the effects of continuum states
The Woods-Saxon-Strutinsky method (the microscopic-macroscopic method)
combined with Kruppa's prescription for positive energy levels, which is
necessary to treat neutron rich nuclei, is studied to clarify the reason for
its success and to propose improvements for its shortcomings. The reason why
the plateau condition is met for the Nilsson model but not for the Woods-Saxon
model is understood in a new interpretation of the Strutinsky smoothing
procedure as a low-pass filter. Essential features of Kruppa's level density is
extracted in terms of the Thomas-Fermi approximation modified to describe
spectra obtained from diagonalization in truncated oscillator bases. A method
is proposed which weakens the dependence on the smoothing width by applying the
Strutinsky smoothing only to the deviations from a reference level density. The
BCS equations are modified for the Kruppa's spectrum, which is necessary to
treat the pairing correlation properly in the presence of continuum. The
potential depth is adjusted for the consistency between the microscopic and
macroscopic Fermi energies. It is shown, with these improvements, that the
microscopic-macroscopic method is now capable to reliably calculate binding
energies of nuclei far from stability.Comment: 66 pages, 29 figures, 1 tabl
- …