5,407 research outputs found
Ageing of the LHCb outer tracker
The modules of the LHCb outer tracker have shown to suffer severe gain loss under moderate irradiation. This process is called ageing. Ageing of the modules results from contamination of the gas system by glue, araldite AY 103-1, used in their construction. In this thesis the ageing process will be shown. The schemes known to reduce, reverse, or prevent ageing have been investigated to determine their effect on the detector performance. The addition of O2 to the gas mixture lowers the detector response by an acceptable amount and does not affect the gas transport properties significantly. The ageing rate is decreased after extensive flushing and HV training could eventually repair the irradiation damage. The risks of HV training have been assessed. Furthermore, several gaseous and aquatic additions have been tested for their capability to prevent, or moderate ageing, but none showed significant improvement
On the Nature of MeV-blazars
Broad-band spectra of the FSRQ (flat-spectrum-radio quasars) detected in the
high energy gamma-ray band imply that there may be two types of such objects:
those with steep gamma-ray spectra, hereafter called MeV-blazars, and those
with flat gamma-ray spectra, GeV-blazars. We demonstrate that this difference
can be explained in the context of the ERC (external-radiation-Compton) model
using the same electron injection function. A satisfactory unification is
reachable, provided that: (a) spectra of GeV-blazars are produced by internal
shocks formed at the distances where cooling of relativistic electrons in a jet
is dominated by Comptonization of broad emission lines, whereas spectra of
MeV-blazars are produced at the distances where cooling of relativistic
electrons is dominated by Comptonization of near-IR radiation from hot dust;
(b) electrons are accelerated via a two step process and their injection
function takes the form of a double power-law, with the break corresponding to
the threshold energy for the diffusive shock acceleration. Direct predictions
of our model are that, on average, variability time scales of the MeV-blazars
should be longer than variability time scales of the GeV-blazars, and that both
types of the blazar phenomenon can appear in the same object.Comment: Accepted for publication in the Astrophysical Journa
Exact solution of the Zeeman effect in single-electron systems
Contrary to popular belief, the Zeeman effect can be treated exactly in
single-electron systems, for arbitrary magnetic field strengths, as long as the
term quadratic in the magnetic field can be ignored. These formulas were
actually derived already around 1927 by Darwin, using the classical picture of
angular momentum, and presented in their proper quantum-mechanical form in 1933
by Bethe, although without any proof. The expressions have since been more or
less lost from the literature; instead, the conventional treatment nowadays is
to present only the approximations for weak and strong fields, respectively.
However, in fusion research and other plasma physics applications, the magnetic
fields applied to control the shape and position of the plasma span the entire
region from weak to strong fields, and there is a need for a unified treatment.
In this paper we present the detailed quantum-mechanical derivation of the
exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static
magnetic field. Notably, these formulas are not much more complicated than the
better-known approximations. Moreover, the derivation allows the value of the
electron spin gyromagnetic ratio to be different from 2. For
completeness, we then review the details of dipole transitions between two
hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various
approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script
Radar Imaging of Volcanic Fields and Sand Dune Fields: Implications for VOIR
A number of volcanic fields and sand dune fields in the western part of North America were studied using aircraft and Seasat synthetic aperture radar images and LANDSAT images. The capability of radars with different characteristics (i.e., frequency, polarization and look angles was assessed to identify and map different volcanic features, lava flows and sand dune types. It was concluded that: (1) volcanic features which have a relatively large topographic expression (i.e., cinder cones, collapse craters, calderas, etc.) are easily identified; (2) lava flows of different ages can be identified, particularly on the L-band images; and (3) sand dunes are clearly observed and their extent and large scale geometric characteristics determined, provided the proper imaging geometry exists
Adsorption and diffusion of CO<sub>2</sub> in CPO-27–Ni beads
The present work involves the scale-up and characterization of CPO-27–Ni metal organic framework using a range of experimental techniques aimed at determining equilibrium and kinetic parameters to assess its potential for post-combustion carbon capture. CPO-27–Ni was prepared from its precursors by molecular gastronomy methods in kilogram scale. Adsorption of isotherms of pure CO2 and N2 were obtained for diferent temperatures on these beads, using a volumetric apparatus and the isotherms were ftted to a dual-site Langmuir model. A series of experiments were then carried out in the volumetric apparatus by dosing a known volume of CO2 and the pressure was monitored with time. The difusional time constants were then extracted by ftting the series of curves to an isothermal difusion model. From the time constants, the values of the difusivities were obtained and compared with the values obtained from frst principles correlations, which employed the pore size, and the porosity values from independent mercury porosimetry experiments. The results from the analysis showed that the transport of CO2 in the beads was well described by a combination of Knudsen and viscous difusion mechanisms. Experiments were also carried out using a zero-length column (ZLC) apparatus by preparing a 10% CO2–He and 10% CO2– N2 mixture. The analysis of the ZLC curves showed that the two diferent carrier gases had an efect of the long-time slope, indicating the presence of a macropore-controlled difusion mechanism.publishedVersio
Sharp error terms for return time statistics under mixing conditions
We describe the statistics of repetition times of a string of symbols in a
stochastic process. Denote by T(A) the time elapsed until the process spells
the finite string A and by S(A) the number of consecutive repetitions of A. We
prove that, if the length of the string grows unbondedly, (1) the distribution
of T(A), when the process starts with A, is well aproximated by a certain
mixture of the point measure at the origin and an exponential law, and (2) S(A)
is approximately geometrically distributed. We provide sharp error terms for
each of these approximations. The errors we obtain are point-wise and allow to
get also approximations for all the moments of T(A) and S(A). To obtain (1) we
assume that the process is phi-mixing while to obtain (2) we assume the
convergence of certain contidional probabilities
Fokker-Planck equation with variable diffusion coefficient in the Stratonovich approach
We consider the Langevin equation with multiplicative noise term which
depends on time and space. The corresponding Fokker-Planck equation in
Stratonovich approach is investigated. Its formal solution is obtained for an
arbitrary multiplicative noise term given by , and the
behaviors of probability distributions, for some specific functions of %
, are analyzed. In particular, for , the physical
solutions for the probability distribution in the Ito, Stratonovich and
postpoint discretization approaches can be obtained and analyzed.Comment: 6 pages in LATEX cod
Does the Blazar Gamma-Ray Spectrum Harden with Increasing Flux? Analysis of 9 Years of EGRET Data
The Energetic Gamma-Ray Experiment Telescope (EGRET) on the Compton Gamma-Ray
Observatory (CGRO) discovered gamma-ray emission from more than 67 blazars
during its 9 yr lifetime. We conducted an exhaustive search of the EGRET
archives and selected all the blazars that were observed multiple times and
were bright enough to enable a spectral analysis using standard power-law
models. The sample consists of 18 flat-spectrum radio quasars(FSRQs), 6
low-frequency peaked BL Lac objects (LBLs) and 2 high-frequency peaked BL Lac
objects (HBLs). We do not detect any clear pattern in the variation of spectral
index with flux. Some of the blazars do not show any statistical evidence for
spectral variability. The spectrum hardens with increasing flux in a few cases.
There is also evidence for a flux-hardness anticorrelation at low fluxes in
five blazars. The well-observed blazars (3C 279, 3C 273, PKS 0528+134, PKS
1622-297 PKS 0208-512) do not show any overall trend in the long-term spectral
dependence on flux, but the sample shows a mixture of hard and soft states. We
observed a previously unreported spectral hysteresis at weekly timescales in
all three FSRQs for which data from flares lasting for ~(3-4) weeks were
available. All three sources show a counterclockwise rotation, despite the
widely different flux profiles. We analyze the observed spectral behavior in
the context of various inverse Compton mechanisms believed to be responsible
for emission in the EGRET energy range. Our analysis uses the EGRET skymaps
that were regenerated to include the changes in performance during the mission
Ultimate performance of polymer:fullerene bulk heterojunction tandem solar cells
We present the model calculations to explore the potential of polymer:fullerene tandem solar cells. As an approach we use a combined optical and electrical device model, where the absorption profiles are used as starting point for the numerical current-voltage calculations. With this model a maximum power efficiency of 11.7% for single cells has been achieved as a reference. For tandem structures with a ZnO/poly(3,4-ethylenedioxythiophene)/ poly(styrenesulphonic acid) middle electrode an ultimate efficiency of 14.1% has been calculated. In the optimum configuration the subcell with the narrowest band gap is placed closest to the incoming light. Consequently, tandem structures are expected to enhance the performance of optimized single cells by about 20%. © 2011 American Institute of Physics
- …