3,789 research outputs found

    Monitoring of Cell Layer Integrity with a Current-Driven Organic Electrochemical Transistor

    No full text
    The integrity of CaCo-2 cell barriers is investigated by organic electrochemical transistors (OECTs) in a current-driven configuration. Ion transport through cellular barriers via the paracellular pathway is modulated by tight junctions between adjacent cells. Rupturing its integrity by H2O2 is monitored by the change of the output voltage in the transfer characteristics. It is demonstrated that by operating the OECT in a current-driven configuration, the sensitive and temporal resolution for monitoring the cell barrier integrity is strongly enhanced as compared to the OECT transient response measurement. As a result, current-driven OECTs are useful tools to assess dynamic and critical changes in tight junctions, relevant for clinical applications as drug targeting and screening

    MOTIFATOR: detection and characterization of regulatory motifs using prokaryote transcriptome data

    Get PDF
    Summary: Unraveling regulatory mechanisms (e.g. identification of motifs in cis-regulatory regions) remains a major challenge in the analysis of transcriptome experiments. Existing applications identify putative motifs from gene lists obtained at rather arbitrary cutoff and require additional manual processing steps. Our standalone application MOTIFATOR identifies the most optimal parameters for motif discovery and creates an interactive visualization of the results. Discovered putative motifs are functionally characterized, thereby providing valuable insight in the biological processes that could be controlled by the motif.

    The many faces of mitochondrial dysfunction in depression: From pathology to treatment

    Get PDF
    Introduction The last years of neurobiological research have transformed the way we consider mental illnesses. We have gone from a deterministic genetic view to a broader vision that includes the involvement of non-cerebral systems. This is especially true for major depression (MD). Historically, MD has been perceived as a multifactorial disorder correlated to various neurobiological changes like neurotransmitter deficits, endocrine disturbances, impaired plasticity, and neural adaptation (Benatti et al., 2016). Indeed, the development and progression of depressive disorders has been conceived as the disruption of body allostasis, defined as the process of achieving stability of physiological and mental processes through dynamic change (Wang et al., 2019). The main player in the “allostatic game” is the brain, an organ designed to integrate signals from the periphery that anticipate fluctuations, changes, and needs and coordinates allostatic mediators in order to develop successful coping mechanisms that ultimately lead to an adaptative strategy and resilience (de Kloet et al., 2005). The establishment and maintenance of these mechanisms requires large amounts of energy from the organism. Without energy, or in a partial lack of energy, the biological mechanisms necessary to respond appropriately to stimuli may not occur or be established incorrectly or abnormally. Human and animal studies suggest an intriguing link between our body’s ability to produce energy and the brain’s ability to correctly perform the complex cellular and molecular processes involved in allostatic processes. In eukaryotic cells, mitochondria are the powerhouse that produces and distributes energy to all other components. Functional or quantitative alterations of the ability of mitochondria to adequately supply energy can have important repercussions primarily on cellular processes and cascades of serial events (Herst et al., 2017) as well as on the correct functioning of the organism including mechanisms of brain plasticity, mood, and behavior in general (Allen et al., 2018). In this framework, it is particularly intriguing to think of the mitochondria as an active regulator of many of the biological phenomena involved in depression and in the efficacy of or resistance to the most widely used pharmacological treatments. Once the energetic equilibrium is compromised, the body becomes more “vulnerable.” This is especially true for stress-related disorders, such as depression. In fact, depression is often associated with energetic imbalance leading to profound effects on the disease (Zuccoli et al., 2017). The driving questions then are as follows: What happens to the brain in the presence of an energetic imbalance? Does depression or depression-related symptoms impact mitochondrial energetic efficiency? Is antidepressant efficacy mediated by mitochondrial functionality

    Gate-bias assisted charge injection in organic field-effect transistors

    Get PDF
    The charge injection barriers in organic field-effect transistors (OFETs) seem to be far less critical as compared to organic light-emitting diodes (OLEDs). Counter intuitively; we show that the origin is image-force lowering of the barrier due to the gate bias at the source contact; although the corresponding gate field is perpendicular to the channel current. In coplanar OFETs; injection barriers up to 1 eV can be surmounted by increasing the gate bias; enabling extraction of bulk transport parameters in this regime. For staggered transistors; however; the injection is gate-assisted only until the gate bias is screened by the accumulation channel opposite to the source contact. The gate-assisted injection is supported by two-dimensional numerical charge transport simulations that reproduce the gate-bias dependence of the contact resistance and the typical S-shaped output curves as observed for OFETs with high injection barriers.

    Comptonization of Infrared Radiation from Hot Dust by Relativistic Jets in Quasars

    Get PDF
    We demonstrate the importance of near-infrared radiation from hot dust for Compton cooling of electrons/positrons in quasar jets. In our model, we assume that the non-thermal radiation spectra observed in OVV quasars are produced by relativistic electrons/positrons accelerated in thin shells which propagate down the jet with relativistic speeds. We show that the Comptonization of the near-IR flux is likely to dominate the radiative output of OVV quasars in the energy range from tens of keV up to hundreds of MeV, where it exceeds that produced by Comptonization of the UV radiation reprocessed and rescattered in the Broad Emission Line region. The main reason for this lies in the fact that the jet encounters the ambient IR radiation over a relatively large distance as compared to the distance where the energy density of the broad emission line light peaks. In the soft - to mid energy X-ray band, the spectral component resulting from Comptonization of the near-IR radiation joins smoothly with the synchrotron-self-Compton component, which may be responsible for the soft X-ray flux. At the highest observed gamma-ray energies, in the GeV range, Comptonization of broad emission lines dominates over other components.Comment: 23 pages, including 5 Postscript figures and 3 tables, uses aastex. Astrophysical Journal, accepted for publication in the December 20, 2000 issu

    Calogero-Moser models with noncommutative spin interactions

    Full text link
    We construct integrable generalizations of the elliptic Calogero-Sutherland-Moser model of particles with spin, involving noncommutative spin interactions. The spin coupling potential is a modular function and, generically, breaks the global spin symmetry of the model down to a product of U(1) phase symmetries. Previously known models are recovered as special cases.Comment: Version to appear in Phys. Rev. Let

    Redefining operant conditioning of escape behaviour in lymnaea stagnalis

    Get PDF
    The escape behaviour is one of the many behavioural responses that can be operantly conditioned in a stimulus-dependent manner in both vertebrates and invertebrates. By exposing the pond snail Lymnaea stagnalis repeatedly to a negative reinforcement its natural tendency to explore its surroundings can be operantly conditioned in both adult and aged snails. When adult snails were trained with 100 mM of KCl their number of escapes was significantly decreased and the latency to first escape was significantly increased. Our behavioural protocol allowed us to investigate memory acquisition, consolidation, and retrieval in pre-and post-training sessions over different days. From the 3rd day of training the learned response was strengthened: the number of the escapes in the post-test session remained significantly reduced even when animals were presented with distilled water. Moreover, adult snails exposed to the negative reinforcement for at least 4 days started to escape significantly less than the control group also in the pre-test session. This effect became more pronounced in the following days and was accompanied by a significant increase in the latency to first escape at the beginning of the pre-test on day 6 and 7. Aged snails, instead, showed selective deficiencies when operantly conditioned: memory retention appeared only after 7 days, while memory retrieval could not be induced. This redefined paradigm can help unravelling a variety of sophisticated cognitive phenomena in L. stagnalis and could be employed also to study the basis of memory impairment occurring during neuro-aging

    Super-resolution provided by the arbitrarily strong superlinearity of the blackbody radiation

    Get PDF
    Blackbody radiation is a fundamental phenomenon in nature, and its explanation by Planck marks a cornerstone in the history of Physics. In this theoretical work, we show that the spectral radiance given by Planck's law is strongly superlinear with temperature, with an arbitrarily large local exponent for decreasing wavelengths. From that scaling analysis, we propose a new concept of super-resolved detection and imaging: if a focused beam of energy is scanned over an object that absorbs and linearly converts that energy into heat, a highly nonlinear thermal radiation response is generated, and its point spread function can be made arbitrarily smaller than the excitation beam focus. Based on a few practical scenarios, we propose to extend the notion of super-resolution beyond its current niche in microscopy to various kinds of excitation beams, a wide range of spatial scales, and a broader diversity of target objects
    corecore