226 research outputs found

    Rare human skin infection with Corynebacterium ulcerans: transmission by a domestic cat

    Get PDF
    Corynebacterium ulcerans is mainly known for its ability to cause animal infections. Some strains of C. ulcerans produce diphtheria toxin, which can cause life-threatening cardiopathies and neuropathies in humans. Human cutaneous C. ulcerans infection is a very rare disease that mimics classical cutaneous diphtheria. We present a very rare case of a C. ulcerans skin infection caused by a non-diphtheria toxin-producing strain of C. ulcerans that resolved after 3weeks of therapy with amoxicillin-clavulanate. A pet cat was the probable source of infection. The presence of C. ulcerans in the mouth of the cat was confirmed by 16S rRNA gene analysis and the API Coryne system. In cases of human infection with potentially toxigenic corynebacteria, it is important to determine the species and examine the isolate for diphtheria toxin production. If toxigenicity is present, diphtheria antitoxin should be administered immediately. Carriers and potential infectious sources of C. ulcerans include not only domestic livestock but also pet animals. For the primary prevention of disease caused by diphtheria toxin-producing corynebacteria, vaccination with diphtheria toxoid is recommende

    Evolutionary patchwork of an insecticidal toxin shared between plant-associated pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus.

    Get PDF
    BACKGROUND: Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the mechanisms driving the evolution of toxin production remain puzzling. RESULTS: Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin, showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes, generating a unique Pseudomonas-specific insect toxin cluster. CONCLUSIONS: Our findings suggest that multiple independent evolutionary events led to formation of at least three versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution

    Vertical Transmission of Mycoplasma pneumoniae Infection

    Get PDF
    Mycoplasma pneumoniae is a significant cause of pneumonia in school-aged children and young adults. We report a case of neonatal M. pneumoniae pneumonia in a preterm child manifesting in the first hours of life. Vertical transmission was demonstrated by the detection of M. pneumoniae in inflamed placental tissue indicating chorioamnionitis

    Self-Organization, Layered Structure, and Aggregation Enhance Persistence of a Synthetic Biofilm Consortium

    Get PDF
    Microbial consortia constitute a majority of the earth’s biomass, but little is known about how these cooperating communities persist despite competition among community members. Theory suggests that non-random spatial structures contribute to the persistence of mixed communities; when particular structures form, they may provide associated community members with a growth advantage over unassociated members. If true, this has implications for the rise and persistence of multi-cellular organisms. However, this theory is difficult to study because we rarely observe initial instances of non-random physical structure in natural populations. Using two engineered strains of Escherichia coli that constitute a synthetic symbiotic microbial consortium, we fortuitously observed such spatial self-organization. This consortium forms a biofilm and, after several days, adopts a defined layered structure that is associated with two unexpected, measurable growth advantages. First, the consortium cannot successfully colonize a new, downstream environment until it selforganizes in the initial environment; in other words, the structure enhances the ability of the consortium to survive environmental disruptions. Second, when the layered structure forms in downstream environments the consortium accumulates significantly more biomass than it did in the initial environment; in other words, the structure enhances the global productivity of the consortium. We also observed that the layered structure only assembles in downstream environments that are colonized by aggregates from a previous, structured community. These results demonstrate roles for self-organization and aggregation in persistence of multi-cellular communities, and also illustrate a role for the techniques of synthetic biology in elucidating fundamental biological principles

    Green Fluorescent Protein Labeling of Listeria, Salmonella, and Escherichia coli O157:H7 for Safety-Related Studies

    Get PDF
    Many food safety-related studies require tracking of introduced foodborne pathogens to monitor their fate in complex environments. The green fluorescent protein (GFP) gene (gfp) provides an easily detectable phenotype so has been used to label many microorganisms for ecological studies. The objectives of this study were to label major foodborne pathogens and related bacteria, including Listeria monocytogenes, Listeria innocua, Salmonella, and Escherichia coli O157:H7 strains, with GFP and characterize the labeled strains for stability of the GFP plasmid and the plasmid's effect on bacterial growth. GFP plasmids were introduced into these strains by a CaCl2 procedure, conjugation or electroporation. Stability of the label was determined through sequential propagation of labeled strains in the absence of selective pressure, and rates of plasmid-loss were calculated. Stability of the GFP plasmid varied among the labeled species and strains, with the most stable GFP label observed in E. coli O157:H7. When grown in nonselective media for two consecutive subcultures (ca. 20 generations), the rates of plasmid loss among labeled E. coli O157:H7, Salmonella and Listeria strains ranged from 0%–30%, 15.8%–99.9% and 8.1%–93.4%, respectively. Complete loss (>99.99%) of the plasmid occurred in some labeled strains after five consecutive subcultures in the absence of selective pressure, whereas it remained stable in others. The GFP plasmid had an insignificant effect on growth of most labeled strains. E. coli O157:H7, Salmonella and Listeria strains can be effectively labeled with the GFP plasmid which can be stable in some isolates for many generations without adversely affecting growth rates

    Do Biofilm Formation and Interactions with Human Cells Explain the Clinical Success of Acinetobacter baumannii?

    Get PDF
    BACKGROUND: The dramatic increase in antibiotic resistance and the recent manifestation in war trauma patients underscore the threat of Acinetobacter baumannii as a nosocomial pathogen. Despite numerous reports documenting its epidemicity, little is known about the pathogenicity of A. baumannii. The aim of this study was to obtain insight into the factors that might explain the clinical success of A. baumannii. METHODOLOGY/PRINCIPAL FINDINGS: We compared biofilm formation, adherence to and inflammatory cytokine induction by human cells for a large panel of well-described strains of A. baumannii and compared these features to that of other, clinically less relevant Acinetobacter species. Results revealed that biofilm formation and adherence to airway epithelial cells varied widely within the various species, but did not differ among the species. However, airway epithelial cells and cultured human macrophages produced significantly less inflammatory cytokines upon exposure to A. baumannii strains than to strains of A. junii, a species infrequently causing infection. CONCLUSION/SIGNIFICANCE: The induction of a weak inflammatory response may provide a clue to the persistence of A. baumannii in patients
    corecore