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Evolutionary patchwork of an insecticidal
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pseudomonads and the insect pathogens
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Abstract

Background: Root-colonizing fluorescent pseudomonads are known for their excellent abilities to protect plants
against soil-borne fungal pathogens. Some of these bacteria produce an insecticidal toxin (Fit) suggesting that they
may exploit insect hosts as a secondary niche. However, the ecological relevance of insect toxicity and the
mechanisms driving the evolution of toxin production remain puzzling.

Results: Screening a large collection of plant-associated pseudomonads for insecticidal activity and presence of the
Fit toxin revealed that Fit is highly indicative of insecticidal activity and predicts that Pseudomonas protegens and
P. chlororaphis are exclusive Fit producers. A comparative evolutionary analysis of Fit toxin-producing Pseudomonas
including the insect-pathogenic bacteria Photorhabdus and Xenorhadus, which produce the Fit related Mcf toxin,
showed that fit genes are part of a dynamic genomic region with substantial presence/absence polymorphism and
local variation in GC base composition. The patchy distribution and phylogenetic incongruence of fit genes indicate
that the Fit cluster evolved via horizontal transfer, followed by functional integration of vertically transmitted genes,
generating a unique Pseudomonas-specific insect toxin cluster.

Conclusions: Our findings suggest that multiple independent evolutionary events led to formation of at least three
versions of the Mcf/Fit toxin highlighting the dynamic nature of insect toxin evolution.
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Background
Bacteria belonging to the Pseudomonas fluorescens group
[1, 2] provide a compelling example of ecological and
bacterial lifestyle diversity reflected by the vast range of en-
vironmental habitats they occupy. This group encloses
plant-beneficial symbionts, environmental saprophytes and
clinical strains of opportunistic human pathogens [3–5].
Within the P. fluorescens group, root-colonizing pseudomo-
nads are well known for their ability to promote plant
growth and to protect plants against soilborne pathogens
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through a set of diverse and functionally complementary
mechanisms. The capacity to suppress fungal diseases
has largely been attributed to the production of second-
ary metabolites with cytotoxic and antimicrobial activ-
ity, in particular 2,4-diacetylphloroglucinol (DAPG),
phenazines, pyoluteorin, pyrrolnitrin, hydrogen cyanide,
and lipopeptides [4, 6].
Extensive knowledge has been gathered over the last

years on plant disease suppression and plant growth
promotion. Surprisingly, it has become only recently
apparent that specific strains of plant-associated pseu-
domonads are able to infect and kill insects [7–12].
These observations invoke that particular strains may
function as insect pathogens and switch between insect
hosts and the plant environment. Insecticidal activity in
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environmental pseudomonads was, with the exception of
Pseudomonas entomophila, a pathogen of Drosophila
[13–15], so far only rarely demonstrated. Initially, an in-
sect toxin was discovered in silico when the genome
of Pseudomonas protegens Pf-5 (previously called P.
fluorescens Pf-5) became available [16]. Subsequent
molecular and mutational characterization revealed
that oral and injectable insecticidal activity is linked to
the Fit (P. fluorescens insecticidal toxin) gene, which
was described and characterized for the first time in P.
protegens strains CHA0 and Pf-5 [7, 12]. Injection of
Fit expressing E. coli is sufficient to induce strong
melanization and rapid death of the tobacco horn-
worm Manduca sexta and larvae of the greater wax
moth Galleria mellonella [7]. Fit toxin knock-out mu-
tants of CHA0 have attenuated virulence, both when
Photorhabdus asymbiotica

Photorhabdus luminsecens

Xenorhabdus bovienii

Xenorhabdus nematophila

Pseudomonas chlororaphis
Pseudomonas protegens

Pseudomonas syringae

Pseudomonas putida

Pseudomonas aeruginosa

Pseudomonas fluorescens

Helicobacter pylori

Pseudomonadales/Moraxellaceae
Chromatiales

Methylococcales 

Thiotrichales 
Xanthomonadales 

Legionellales 

Oceanospirillales

Alteromonadales

Pasteurellales

Aeromonadales

Vibrionales

Enterobacteriales

Enterobacteriales

Fig. 1 Organization of the Fit gene cluster and their homologues (mcf)
composed of eight ORFs encoding the insecticidal toxin (red arrow), p
including an outer membrane protein (OMP), and regulators of toxin p
the genome is indicated by + for the leading strand and by – for lagg
P. luminescens adjacent to mcf2, a truncated variant of mcf1. X. bovienii
variant. Blue arrows indicate flanking genes, which share no homology
P. protegens, P. chlororaphis, Photorhabdus spp. and Xenorhabdus spp. w
based on concatenated RecA, RpoB and RpoD protein sequences
injected into G. mellonella or fed to African cotton
leafworm Spodoptera littoralis [7, 12]. The Fit gene
cluster consists of eight genes (fitABCDEFGH) with
functions in toxin export, insect toxicity and regula-
tion (Fig. 1). The Fit insect toxin gene fitD is flanked
upstream by fitABC and downstream by fitE encoding
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of the fitFGH genes regulate toxin production [7, 8, 10, 11].
FitF is a sensor histidine kinase – response regulator
hybrid, detecting the insect environment and activating
insecticidal toxin expression via FitH and FitG [11].
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The Fit insect toxin shares 73 % identity with the
makes caterpillars floppy insecticidal toxin Mcf1 and
67 % with Mcf2, both produced by Photorhabdus
luminescens, a bacterial symbiont of entomopatho-
genic nematodes [7, 18, 20]. Mcf-like toxins are also
found in Photorhabdus asymbiotica, Xenorhabdus nemto-
phila and Xenorhabdus bovienii (Fig. 1) [18–21]. The
Mcf1 toxin causes rapid disruption of the insect midgut
epithelium and hemocytes triggered by a BH-3-like apop-
tosis control domain [18, 22]. Injection of purified Mcf1 in
Drosophila embryos leads to a freezing phenotype of he-
mocytes, due to a rearrangement of the actin cytoskeleton
[23]. While Mcf toxins are essentially studied in the
Photorhabdus lineage the evolutionary basis for the
homology between Fit and Mcf toxins has remained
unclear.
Here, we conducted comparative sequence analysis in

combination with virulence assays to yield a better un-
derstanding of insect pathogenicity in plant-associated
pseudomonads. In order to study Fit/Mcf toxin evolu-
tion we have sequenced seven Pseudomonas genomes
to retrieve the entire gene cluster. We analyzed evolu-
tionary footprints of the Pseudomonas Fit gene cluster
and the related Mcf genes of the insect pathogenic
Photorhabdus and Xenorhabdus bacteria and found pat-
terns of recent horizontal transfer.
This study suggests that the Fit toxin is restricted to a

particular group of plant-colonizing pseudomonads con-
sisting of P. protegens and P. chlororaphis. We show that
the presence of the fit toxin gene strongly correlates with
high insect toxicity and thus is a suitable molecular
marker for potent insecticidal activity in fluorescent pseu-
domonads. Absence of the Fit toxin gene in closely re-
lated pseudomonads and the genomic context suggest
that fit genes have evolved in part via exchange of
genetic material from phylogenetically distantly related
bacteria. The acquisition of the Fit toxin within pseudo-
monads may represent an ancient event in the evolution
towards a distinct ecotype of insect-associated pseudomo-
nads. Our analysis further indicates substantial rearrange-
ments within Photorhabdus/Xenorhabdus lineage of these
insecticidal toxins thereby extending and diversifying the
existing toxin repertoire of these entomopathogens.

Results and discussion
Survey of diverse pseudomonads predicts P. protegens
and P. chlororaphis as exclusive Fit producers within
plant-colonizing pseudomonads
We investigated the occurrence of Fit toxin produc-
tion in plant-associated pseudomonads and tested
whether insect toxin production is linked to specific
ecological and molecular characteristics. We screened
a large worldwide collection of Pseudomonas isolates
(103) from soil and roots of different plant species
using generic primers directed against the Fit toxin
gene fitD (Additional file 1: Table S1). In addition to
the root-associated isolates, we tested 15 strains repre-
senting the major phylogenetic groups within the
genus Pseudomonas and strains isolated from different
environments including invertebrates such as cyclops,
earthworms or isopods for the presence of the fitD
gene. The phylogenetic relationship of the investigated
strains based on concatenated sequences of the three
housekeeping genes recA, rpoB and rpoD is shown in
Fig. 2a.
PCR amplification and sequencing showed the presence

of the toxin in 29 strains (Fig. 2a, Additional file 1:
Table S1). In addition, PCR results were verified using
Southern blotting on a subset of isolates (data not shown).
We detected the Fit toxin gene only in two phylogenetic
subgroups within the P. fluorescens group (grouping ac-
cording to [1, 2]). The first subgroup comprises fluores-
cent pseudomonads that produce both the antifungal
metabolites DAPG and PLT [24, 25] including our model
strain P. protegens CHA0 [26]. As the second group of Fit
toxin gene carriers, we were able to identify members of
the P. chlororaphis subgroup (Fig. 2a). We included in
addition to P. protegens CHA0 and Pf-5 the sequenced
strains P. chlororaphis GP72 [27], Pseudomonas aureofa-
ciens 30-84 [17] and Pseudomonas CMR12a (unpublished
data) all harboring the Fit gene cluster. CMR12a is placed
next to the group of DAPG and PLT producers, although
CMR12a is phylogenetically clearly distinct from these
strains (Fig. 2a) and does not produce the two antifungal
compounds [28, 29].

Insecticidal activity strongly correlates with the presence
of the Fit toxin gene
We aimed to test if insecticidal activity is restricted to a
particular group of pseudomonads and whether presence
of the Fit toxin is predictive of insecticidal activity. To
this end, the insecticidal activity of selected strains from
phylogenetically and functionally diverse subgroups
within the P. fluorescens group (Fig. 2a) was tested using
a previously established assay with larvae of the greater
wax moth Galleria mellonella [7]. Tested strains in-
cluded representatives of different phylogenetic subgroups
of DAPG-producers and some DAPG non-producing
strains (Fig. 2a). Injection assays with Galleria larvae dem-
onstrated that Pseudomonas strains harboring the fitD
toxin gene display potent insecticidal activity while the
naturally fitD-negative sister group fails to induce signifi-
cant mortality (Fig. 2b). Since insecticidal activity is re-
stricted to a particular group and substantial toxicity is
retained in fitD knock-out mutants [7], insecticidal activity
is likely driven by other shared traits. We have previously
shown that the fit toxin gene significantly contributes
to the insecticidal activity, but requires additional



A

B

Fig. 2 Insecticidal activity correlates with presence of the fitD gene. (a) The Phylogenetic relationship amongst 29 closely related plant-associated Fit+

and 24 Fit− pseudomonads is based on the three concatenated housekeeping genes recA, rpoB and rpoD consisting of a total of 1469 nucleotide
sites with Pseudomonas syringae as outgroup. Strains/subgroups harboring the Fit toxin gene and major antifungal compounds produced by the
pseudomonads are indicated: DAPG, 2-4-diacetylphloroglucinol; PHZ, phenazines; and PLT, pyoluteorin. The evolutionary history was inferred using
PhyML 3.0. Bootstrap values are based on 100 replicates and indicated for major nodes indicated by circles. Only the P. protegens and P. chlororaphis
subgroups harbor the Fit toxin gene. The P. corrugata subgroup containing DAPG producers is indicated as defined by Mulet [1, 2]. (b) Insect mortality
of G. mellonella larvae four days after injection of 4 × 104 cells of 17 Fit producing and 13 non-producing Pseudomonas strains. Tested strains are shown
in bold in (A). Each strain was tested on a total of 30 larvae (five replicate plates with six larvae per plate). Bars show average of insect mortality for
each strain. Error bars show standard error of the mean. The experiment was repeated with similar results (Additional file 2: Table S2). Fit+ strains were
significantly different from Fit− based on Wilcoxon rank sum test grouped by Fit+ and Fit− strains (P < 0.05)
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factors for full activity that are regulated by the
GacS/GacA system [11, 12]. Nevertheless, the Fit
toxin gene seems to be predictive of insecticidal activ-
ity in root-colonizing fluorescent pseudomonads.
The Fit gene cluster is located in a dynamic genomic
region
To characterize the Fit gene cluster among Pseudomonas
spp. we generated high quality assemblies of seven
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toxin-producing strains (i.e., P. protegens CHA0,
BRIP, PGNR1, K94.41, and PF and P. chlororaphis
PCL1391 and CD of which) covering the entire Fit
toxin cluster and flanking regions. The complete gen-
ome sequence of CHA0 has recently been published
[30]. Sequences containing the fit genes were aligned
to the reference sequence of strains Pf-5 and 30-84
[16, 17]. All seven strains contain the complete fit
toxin cluster (fitABCDEFGH). The Fit gene cluster in
the genome of Pf-5 is embedded in a large genomic
region, with features indicative of horizontal acquisition,
such as phage-related proteins and unusual nucleotide
composition (Fig. 3a) [17]. The fit cluster in P. chlorora-
phis strains 30-84 and O6 is located in a different part of
the genome within a 24-28 gene insertion (Fig. 3b) [17].
We were able to define a 165-kb region of the Pf-5
genome flanked by steep residual G + C content clines
(Fig. 3a). Abrupt changes in the residual cumulative
G + C content curve may point to foreign genetic ele-
ments, such as horizontally acquired genes, phage-
derived elements or other mobile elements [31]. The
corresponding genomic region in strain PF is highly
similar to that of Pf-5 and in both strains the region
is delimited at the 5’-end by a type I restriction modi-
fication system and by phage-related proteins at the
3’-end. Interestingly, comparisons of the respective re-
gions among the six P. protegens strains show a high
level of insertion-deletion polymorphism. In particu-
lar, the type I restriction-modification system is
present in strains Pf-5, PF, K94.41 and BRIP, but ab-
sent in PGNR1 and CHA0 (Fig. 3a). The gene cluster
encoding the rhizoxin biosynthesis is unique to Pf-5
and PF as well as the phage-related proteins [32]. A
polysaccharide synthesis gene cluster (pel) is common
to all P. protegens strains and located upstream of the
Fit cluster. In Pseudomonas aeruginosa, Pel is one of
at least three secreted extracellular polysaccharides
implicated in biofilm formation [33].
The genomic context of the fit genes in P. protegens

differs from that in P. chlororaphis (Fig. 3b). Using the
residual cumulative G + C content approach a region of
45 kb composed of 34 ORFs was defined in P. chlorora-
phis strain 30-84. Similar to P. protegens, there is sub-
stantial presence/absence polymorphism. In strains CD
and PCL1391, adjacent to a gene encoding a putative
membrane-associated transporter upstream of fitA, a
nine-ORF gene cluster involved in ribose uptake and
utilization is located, which was assumed to be unique
to the P. chlororaphis subgroup of the P. fluorescens
group [17].

Fit gene cluster: a phylogenetic patchwork
Since only strains of P. protegens and P. chlororaphis
were identified as carriers of the Fit toxin, we were
interested in the evolutionary origin of this gene clus-
ter. High similarities between protein sequences in dis-
tantly related species, patchy distribution or phylogenetic
incongruence indicate potential horizontal transmission of
a gene [34]. BLASTP searches, revealed a very distinct
phylogenetic distribution of Fit components. Consistent
with horizontal transmission, most of the Fit components
(except FitE and FitG) have significant best hits outside
the Pseudomonas (Additional file 2: Table S2). Initial
sequence analysis of the Fit toxin from P. protegens strain
CHA0 revealed 73 % sequence identity over the entire
protein to the insecticidal protein Mcf1 of P. luminescens
strain TT01 [7]. Mcf2 of TT01 shares 67 % identity with
FitD (Additional file 3: Figure S1). Mcf1 is also present
in P. asymbiotica ATCC 4394, but this bacterium ap-
pears to have lost Mcf2 [20]. Similarly, X. bovienii SS-
2004 and X. nematophila ATCC 19061, both sister
species of Photorhabdus, carry an Mcf variant, which
we call here Mcf3 with 69 %, respectively, 65 % overall
identity to FitD and highest identity (79 %, respect-
ively 76 %) in a 900 amino acid N-terminal overlap.
Mcf3 is also present in Photorhabdus temperata [35].
Within the genus Xenorhabdus Mcf2 is only found in
X. nematophila ATCC 19061 with an overall identity
of 64 % to FitD. Mcf-like proteins are also found in
other γ-Proteobacteria including Vibrio and Providen-
cia spp. Distantly related Fit-like genes (27-28 % identity)
[7, 17], (Additional file 2: Table S2) with a predicted
TcdA/TcdB pore-forming domain can also be found in
P. brassicacearum and diverse Fit-negative P. fluores-
cens strains, but none of the representative strains of
this group tested in our virulence tests (i.e., P12, Q8r1-
96, Q2-87, Q12-87, belonging to the P. corrugata sub-
group) caused significant insect mortality (Fig. 2b).
Interestingly, FitA, FitB and FitC with predicted func-
tion in toxin secretion [7] revealed highest similarities
(69 %, 65 % and 73 % amino acid identity) with the
RTX toxin transporter encoded by the genomic region
adjacent to the Mcf2 insect toxin gene of P.
luminescens (Additional file 2: Table S2, Fig. 4). Similar
genes, however, are absent in proximity of mcf1 and
mcf3 as well as of mcf2 of Xenorhabdus (Figs. 1 and 4).
The only fit components showing closest identity to the
genus Pseudomonas are FitE (62 % identity to P.
brassicacearum) and the regulatory protein FitG (45 %
identity to P. fluorescens and Serratia sp.). The other
proteins involved in regulation of toxin expression
(FitF and FitH) show closest identity to Dechloromo-
nas aromatica (41 %) and Vibrio sp. (54 %), respect-
ively. The three regulatory proteins FitF, FitG and FitH
are absent in Photorhabdus/Xenorhabdus, suggesting a
Pseudomonas-specific regulation of Fit. However, we
cannot rule out an earlier existence of the whole cluster
also in Photorhabdus/Xenorhabdus but that transport
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Fig. 3 Comparison of the Fit cluster harbouring region. Within P. protegens (a) and P. chlororaphis (b) subgroups indicates a high degree
of absence/presence polymorphism. The genomic region was defined based on residual cumulative G + C content analysis of P. protegens
strain Pf-5 and P. chlororaphis strain 30-84, where steep slopes indicate local variations in G + C content indicative of foreign elements.
Compared with Pf-5 and PF, the genomic region of strains K94.41, BRIP, PGNR1 and CHA0 is notably downsized
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and regulatory genes were subsequently lost. Mcf2 in
Photorhabudus luminescens, for example is still flanked by
the three transport genes.
The patchy phylogenetic distribution of Fit/Mcf toxins

and the absence of the toxin in closely related Pseudo-
monas species e. g members of the P. corrugata subgroup
strongly suggest that the Fit cluster evolved in part via
horizontal acquisition, followed by functional integration
of vertically transmitted genes, making up a unique viru-
lence cluster within the subclade of P. chlororaphis and P.
protegens.
Fig. 4 Similarity plot Fit and Mcf toxin encoding genomic regions in Pseudom
conducted using LAGAN as implemented in mVISTA [59] with the respective
mcf1 (c) Photorhabdus luminescens TT01 mcf2 and (d) X. nematophila ATCC 19
between aligned sequences at a given coordinate on the reference sequence
coding region of the reference sequences in dark red for toxin genes, in oran
conservation not related to the cluster sequence are colored in pink. Regions
only present adjunct to mcf genes in Xenorhabdus and Photorhabdus. Dotted
Nucleotide key positions discussed in the text are indicated with numbers 1-5
5 = site 9015. The plot shown of each alignment ranges between 50 % and 1
Mosaic composition of Fit/Mcf toxin variants
Aligning the genomic regions of FitD and Mcf variants
encoding sequences reveals a mosaic like structure of
toxin-encoding parts and associated components. The
fitD-encoding region of P. protegens and P. chlororaphis
shows extraordinarily high similarity over the entire gene
(69-75 %) to mcf1 of P. luminescens and P. asymbiotica.
However, immediately adjacent flanking regions drop
below the threshold of alignable sequences set at 50 %
similarity in a 100 bp window (Fig. 4). Short stretches
sharing over 70 % nucleotide similarity outside the
onas, Photorhabdus and Xenorhabdus species. The alignment was
reference sequence of (a) P. protegens CHA0 fitD, (b) P. luminescens TT01
061 mcf. The peaks and valleys graphs represent percent conservation
. Regions of high conservation (≥70 %) are colored according to the
ge for transport genes and in green for regulation genes. Regions of high
colored in blue have high similarity to transposable elements and are
lines mark the region encoding the TcdA/TcdB pore forming domain.
in Fig. 1a for fitD: 1 = site 1; 2 = site 2707; 3 = site 4849; 4 = site 6831;
00 % identity calculated on a 100 bp window
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designated toxin encoding regions indicated by sharp
peaks in the similarity plots among P. luminescens, P.
asymbiotica as well as between P. luminescens genes mcf1
and mcf2 include fragments with predicted association to
transposable elements (Fig. 4).
Within the Photorhabdus/Xenorhabdus lineage three

variants of Mcf toxins can be determined based on their
sequential make up: Mcf1, Mcf2 and Mcf3. While insect
toxicity has been demonstrated at several levels for
Mcf1 and Mcf2 from Photorhabdus [18, 19, 23], and
FitD from Pseudomonas 2013 [7, 12], the functionality
of Xenorhabdus Mcf toxins remains to be tested, in
particular of Mcf3 the most distinct toxin variant dis-
cussed in this paper.
The VISTA alignment presented in Fig. 4 shows the

mosaic-like structure of Mcf variants. While fitD and mcf1
share high homology over the entire nucleotide sequence,
mcf3 in the Xenorhabdus lineage and also present in P.
temperata shares only the 5′-end (Position 1-2, Fig. 4)
with fitD/mcf1 (Figs. 4 and 5a). Including mcf2 in the
alignment, it becomes apparent, that it is exactly this
C80
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mcf1, which is entirely missing in mcf2 (Figs. 4 and 5).
BLAST searches revealed that the sequence towards the
3′-end (Position 2-5, Fig. 4) of the Xenorhabdus mcf3
shows for most of this stretch (position 2-3 and position
4-5, Fig. 4) no similarity to the other mcf/fitD variants and
did not allow to identify a putative origin. The rapid drop
from >70 % similarity to 40 % between position 1
and 2 (Fig. 4) coincide with a breakpoint indicated by
SBP (Single Breakpoint Recombination) analysis. In
the middle of this stretch there is a part (position 3-
4, Fig. 4) which again shows a low similarity (50-70 %
at the nucleotide level, Fig. 4) to the TcdA/TcdB pore
forming domain of fit, mcf1 and mcf2. Thus, all inves-
tigated toxin variants encode a TcdA/TcdB pore-
forming domain in this region, however, based on
amino acid and nucleotide comparison, it seems that
these pore-forming domains originate from at least
two different ancestors (Fig. 4). A phylogenetic tree
conducted on the TcdA/TcdB pore forming domain in-
deed suggests a monophyletic origin for the pore-
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forming domain of FitD/Mcf1 and Mcf2, but a differ-
ent origin for that of Mcf3 found in Xenorhabdus and
P. temperata (Fig. 5b).
The mosaic composition of the different fit/mcf vari-

ants, the presence of transposable elements and the
patchy phylogenetic distribution of the toxin could indi-
cate a highly mobile nature of this gene. An unusual GC
content of a gene/segment, is a further indication of
horizontal acquisition, assuming that donor and recipi-
ent have a sufficiently high degree of base composition
differences [36, 37]. While the average GC content of P.
luminescens TT01 (43.9 %) and X. nematophila ATCC
19061 (45.3 %) genomes is low, Pseudomonas spp. have
high overall GC content (P. protegens Pf-5: 64.0 %; P.
chlororaphis 30-84: 63.8 %). Comparing the GC content
of fitD and mcf1 to the respective average of all genes
within the same strain, the mcf1 gene in P. lumines-
cens displays an unusual high GC content (56.2 % vs.
43.9 %), whereas the fitD gene in Pseudomonas is
within the range of the average GC content of the gen-
ome (e.g., Pf-5: 65.2 % vs. 64.0 %) (Table 1). In
addition, only 0.3 % of P. luminescens genes display an
equal or higher GC content than mcf1 and rtxD and
rtxB (homologous to fitA and fitB in P. luminescens
Table 1 GC content of fitD and mcf genes

Strain Gene Position Strand

Pseudomons protegens

Pf-5 fitD 3350746..3359757 +

CHA0 fitD 3362990..3371995 +

fitA 3357171..3359312 +

fitB 3359309..3360697 +

fitC 3360700..3362859 +

Pseudomonas chlororaphis

3084 fitD 4176228..4185206 +

Photorhabdus luminescens

TTO1 mcf1 4832190..4841195 -

mcf2 3670273..3677427 +

Plu3125a 3664486..3666606 +

Plu3126a 3666606..3667994 +

Plu3127a 3667994..3670153 +

Photorhabdus asymbiotica

ATCC 43949 mcf1 3962994..3971975 +

Xenorhabdus nematophila

ATCC 19061 mcf 2205090..2212682 +

mcf2 1917776..1924951 +

Xenorhabdus bovienii

SS-2004 mcf 2380592..2388193 -
aEncode predicted transporters and are homologous to fitA, fitB and fitC respectivel
adjunct to mcf2) (data not shown). Interestingly, all
investigated mcf variants of Xenorhabdus spp. do not
show such obvious abnormality (50 % vs. 45 %)
(Table 1).
The unusual nucleotide composition of mcf1 and mcf2

in Photorhabdus contradicts the hypothesis that pseudo-
monads acquired the insect toxin from entomopatho-
genic Photorhabdus. However, horizontal acquisition of
mcf in Photorhabdus from an unknown ancestral vector
is very likely. In P. chlororaphis and P. protegens the nu-
cleotide composition of the fit genes does not differ
from the average of the whole genome (Table 1). There-
fore, one might speculate that pseudomonads have ac-
quired the toxin earlier than Photorhabdus and the fit
codon usage has already adapted to the Pseudomonas
background or that pseudomonads have acquired the
toxin from a bacterium displaying a similar nucleotide
composition.
mcf toxin genes are not only shuffled around in bac-

teria. A recent study by Ambrose [38] indicates that a
mcf-like gene of the fungal grass endosymbiont Epichloë
poae, which is sufficient to confer a lethal phenotype
when expressed in E. coli cells and injected into the
black cutworms Agrotis ipsilon, has derived from a
Length (bp) GC content (%) GC content genome (%)

9012 65.2 64.0

9006 65.1 63.4

2142 65.4

1389 65.7

2160 66.9

8979 66.1 62.9

8994 56.2 43.9

7155 52.0

2121 54.8

1389 55.8

2160 57.3

5982 54.4 42.2

7593 50.7 45.3

7176 50.2

7602 50.6 45.0

y
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single lineage-specific horizontal transfer of bacterial
origin [38].

Conclusions
The plant environment was assumed to be the dominant
niche of P. fluorescens group bacteria, but it becomes appar-
ent that some members, notably P. protegens and P. chlor-
oraphis, which harbor the Fit insect toxin, are capable of
colonizing and killing insects [7–12, 17]. The present com-
parative analysis study provides a better understanding of
the processes driving the evolution of insect pathogenicity
in environmental pseudomonads. The Fit virulence cassette
seems to be ubiquitous for P. protegens and P. chlororaphis
and is encoded in dynamic portions of the P. protegens and
P. chlororaphis genomes with substantial absence/presence
polymorphism, phage-related genes and an unusual base
composition, while in the Photorhabuds/Xenorhabdus
lineage transposable elements are located in proximity of
the Mcf gene. It would therefore appear that evolutionary
processes including the acquisition of insecticidal ele-
ments, sequence rearrangements (as demonstrated in this
study) and protein adaptation through domain shuffling
(as demonstrated by Kupferschmied [11]) allowed plant-
associated pseudomonads to adapt to a new ecological
niche. In line with the genomic arguments of horizontal
acquisition are the patchy distributed fit components that
share highest homology with bacteria outside the Pseudo-
monadaceae family. Our data show that a specific group of
plant-colonizing pseudomonads have evolved a unique
virulence gene cluster through diverse evolutionary pro-
cesses, which contributed to extend their existing repertoire
of antifungal and antipredator activities with insecticidal
activity. Frequent mobilization and recombination is
possibly favored by the common niche of insect hosts
shared between these particular Pseudomonas, Photo-
rhabdus and Xenorhabdus bacteria, and may provide a
selective advantage by the diversification of the toxin
gene repertoire.

Methods
Bacterial strains
Bacterial strains used in the present study are summarized
in Additional file 1: Table S1. For the screening, we relied
on a worldwide strain collection of Pseudomonas spp. iso-
lated from the rhizosphere, roots and leaves of various
plant species [24, 25, 39–41]. Strains belonging to the
genus Photorhabdus and Xenorhabdus were originally iso-
lated from entomopathogenic nematodes (Steinernema
and Heterorhabditis species) sampled from diverse soils in
Switzerland using Galleria mellonella larvae as baits [42].
Bacteria used in this study were cultured on King’s
medium B (KMB) agar plates, or in lysogeny broth (LB) at
27 °C [43–45]. Additional strains from environmental
samples were isolated by plating serial dilutions on KMB
supplemented with antibiotics at the following concentra-
tions: chloramphenicol 13 μg ml−1, ampicillin 40 μg ml−1

and cycloheximide 100 μg ml−1. For single gene amplifica-
tion, DNA was obtained from overnight LB cultures di-
luted 1:500 with sterile distilled H2O and incubated for
10 min at 96 °C to lyze bacterial cells.

Insect toxicity assay
Washed bacterial cells from overnight cultures in (LB)
were suspended in 0.9 % sterile NaCl solution and ad-
justed to an OD600 = 0.01. Aliquots of 5 μl, correspond-
ing to an injection dose of 4 x 104 cells, were injected
into the haemolymph of ultimate-instar G. mellonella
larvae (Hebeisen Fishing, Zürich, Switzerland) using a
Hamilton microsyringe with a 26-gauge needle [7].
Sterile NaCl solution served as control. Treated larvae
were incubated in Greiner six-well plates at room
temperature and scored as live or dead regularly over
four days. For each bacterial strain, five replicate
plates with six larvae per plate were prepared. The
experiment was repeated twice with similar results.
Mortality was defined as the inablity of larvae to react
to poking. Significance between Fit+ and Fit− pseudo-
monads was assessed based on Wilcoxon rank sum
test (P ≤ 0.05). For data analyses, R version 3.1.1 was
used [46].

Taxon determination
For the taxon determination of uncharacterized strains,
a 455-bp 16 s rDNA fragment was amplified and se-
quenced using the universal primers f933 and r1387
[47]. For strains belonging to the genus Pseudomonas
three housekeeping genes were used in addition, ampli-
fied and sequenced with primers recAf1, recAr1 for recA
(537 bp), rpoBf1, rpoBr1 for rpoB (508 bp) and rpoDf1,
rpoDr1 for rpoD (695 bp) [24]. PCR reactions were con-
ducted according to the standard protocol for use of Dream
TAQ Polymerase (Fermentas GmbH, St. Leon-Rot,
Germany). PCR products were electrophoreticaly separated
on 1 % agarose gels and purified using the Nucleo-Fast
PCR purification kit (Macherey-Nagel). Sequencing was
carried out using the BigDye® Terminator v3.1 Cycle
Sequencing Kit (Life Technologies Cooperation, Carlsbas,
USA). Sequencing products were purified on Sephadex
G-50 followed by capillary elctrophoresis separation
using an ABI Hitachi 3130xl Prism Genetic Analyzer
(Applied Biosystems). The obtained sequences were
blasted against public available genomic sequences on
the NCBI website.

Sequencing of fit gene cluster and fitD/mcf1 fragments
Pairs of primers for the amplification of fitD/mcf1
genes were designed based on the fitD sequences of
P. protegens strains CHA0 and Pf-5. Primer specificity
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was tested in silico using BLASTN against assemblies
of whole genome shotgun sequences from the NCBI web-
site. Primer pairs are fit1f 5’-TGGCTTTTATGTCCAAG
GAC-3’, fit1r 5’-TGGTTGGCGAAGTACTGCTC-3’ (pos-
ition 2-962) and fit2f 5’-CTGACCACGTTCGACGCC
GAGCAATG-3’, -fit2r 5’-TAACGTCCCACCGCCTTGG
CATCTTCG-3’ (position 4828-5702) and allowed ampli-
fiaction of fitD, mcf3 and mcf1, but not mcf2. The fit1f/fit1r
primer pair was tested on a collection of Pseudomonas,
Photorhabdus and Xenorhabdus spp. listed in Additional
file 1: Table S1. Amplification with primers fit1f and fit1r
yielded one single amplicon ranging from 914 to 980 bp
for P. protegens, P. chlororaphis, Photorhabdus and Xenor-
habdus strains carrying the fitD, mcf3 or mcf1 insect toxin
genes, respectively. For P. protegens and P. chlororaphis, a
second fitD fragment was amplified and sequenced with
primer pair fit2f/fit2r resulting in one single amplicon of
875 bp. PCR reactions and sequencing of the two frag-
ments were conducted as described above for housekeep-
ing genes.
Illumina sequencing was applied to retrieve the entire fit

cluster and flanking genes of P. protegens strains PF,
K94.41, BRIP, PGNR1, and CHA0 and P. chlororaphis
strains PCL1391 and CD. Genomic DNA was extracted
from 10 ml LB overnight culture grown from a single col-
ony using the DNeasy extraction kit (Qiagen). Sequence
data consisted of 90-bp paired-end Illumina reads carried
out on a 500-bp library. The short reads were assembled
using SOAPdenovo version 1.05 [48]. Contigs that harbor
the fit genes were identified by BLASTN searches and
annoted on the RAST server [49]. The sequence obtained
for CHA0 is in accordance with the recently published
genome of CHA0 (NCBI accession no. CP003190, [30].
Vista alignments shown in Fig. 4 were performed using

mVISTA [50, 51] with LAGAN as alignment algorithm
on 100 bp window. The genomic region encoding either
the Fit toxin for Pseudomonas species or the homologous
Mcf toxin in Photorhabdus and Xenorhabdus (NC005126,
NC012962, NC014228, NC013892) species were ex-
tracted using BioEdit (http://www.mbio.ncsu.edu/
BioEdit/bioedit.html) 25 kb downwards and 25 kb
upwards from the starting codon of the toxin encoding
gene (fit/mcf) and oriented according to the transcription
direction of fitD from P. protegens CHA0.

Phylogenetic analysis
Public available gene sequences for housekeeping
genes of previously characterized Pseudomonas and
other γ-proteobacterial strains included in the phylo-
gentic analyses were retrieved from GenBank (http://
ncbi.nlm.nih.gov/genbank) and added to our dataset.
For the phylogenetic analysis shown in Fig. 2 sequences
of the three housekeeping genes (recA, rpoB, rpoD)
were concatenated into a single combined dataset using
BioEdit (http://www.mbio.ncsu.edu/BioEdit/bioedit.html).
Sequence data sets were all aligned using MUSCLE [52]
implemeted in MEGA5 [53] and alignment gaps and poorly
aligned segements were removed with Gblocks [54] result-
ing in data sets of 1469 bp. Tree topologies based on nu-
cleotide sequences (Fig. 2) were inferred using PhyML 3.0
with HKY85 substituion model and default settings [55].
The node supports were evaluated based on 100 bootstrap
replicates.
The tree in Fig. 1 was inferred on concatenated

whole protein sequences of RecA, RpoB and RpoD
using the LG amino acid replacment matrix [56]. For
the TcdA/tcdB phylogeny shown in Fig. 5, a BLASTP
search was performed based on the amino acid do-
main sequence of P. luminescens of TT01 and the
tree inferred as described above for protein se-
quences. The presence of the TcdA/TcdB pore-
forming domain in this region was confirmed by
SMART (http://smart.embl-heidelberg.de).
Single Breakpoint Recombination analysis on mcf/fit

sequences were performed on the Datamonkey webser-
ver (http://www.datamonkey.org).
In silico detection of Fit components
The amino acid sequences of fit genes of P. protegens
CHA0 [7] served as query for BLASTP searches against
completed bacterial genomic sequences. BLAST searches
are summarized in Additional file 3: Figure S1.
Residual cummulative GC content
GC content for fit genes was calculated using the
seqinr package implented in R [57]. Identification of
the genomic region carrying the fit cluster was de-
fined on local variations of G + C content of the P.
protegens Pf-5 and P. chlororaphis 30-84 genomes.
GC content of genomes as listed in Table 1 are re-
trieved from the NCBI genome database. The residual
cumulative GC content analyses were conducted ac-
cording to a GC profile approach [31] described pre-
viously by [58]. First, the G + C content is calculated
in a 1-kb sliding window with 20-bp steps before the
residual cumulative G + C content is presented as bi-
dimensional graph on which chromosome positions
on the horizontal axis are plotted versus the residues
on the vertical axis. A DNA stretch enriched or de-
pleted in G’s and C’s is indicated by a steep slope on
the graphs in Fig. 3.
Availability of supporting data
Sequence data supporting the results of this article
are available in LabArchives (DOI:10.6070/H47M05X,
http://dx.doi.org/10.6070/H47M05X0)
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Additional file 1: Table S1. Bacterial strains used in this study
[60–106].

Additional file 2: Table S2. BLASTp analysis of P. protegens CHA0
Fit components against completed bacterial whole genome
sequences.

Additional file 3: Figure S1. Insecticidal activity correlates with
presence of the fitD gene.
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Table S1 Bacterial strains used in this study. 
Strain Origina Fit /Mcf Reference 
Azospirillum brasilense    
UAP 154 Maize - [60] 
CNF 535 Unknown - [61] 
Azospirillum lipoferum    
Crt1 Maize - [62] 
Bacillus mycoides    
A23 Unknown - [63] 
Burkholderia spp.    
J2502 Unknown - [63] 
Cupriavidus necator    
JMP134 Unknown - [64] 
Erwinia amylovora    
CFBP 1430 Hawthorn - [65] 
Erwinia carotovora    
ATTn10 Unknown - [66] 
EC852 Unknown - [67] 
Escherichia coli     
K12 Laboratory strain - [68] 
Photorhabdus asymbiotica   
ATCC 43949 Human + [20] 
Photorhabdus luminescens   
2 Heterorhabditis (Swiss soil) + This study 
3 Heterorhabditis (Swiss soil) + This study 
I Heterorhabditis (Swiss soil) + This study 
TT01 Heterorhabditis 

bacteriophora 
+ [69] 

Photorhabdus temperata   
1 Heterorhabditis (Swiss soil) + This study 
7 Heterorhabditis (Swiss soil) + This study 
9 Heterorhabditis (Swiss soil) + This study 
10 Heterorhabditis (Swiss soil) + This study 
17 Heterorhabditis (Swiss soil) + This study 
Pseudomonas aeruginosa   
PAO1 Human - [70] 
Pseudomonas caricapapaye    
LMG2152  - LMG collection 
Pseudomonas chlororaphis    
30-84 Soil + [71] 
DTR 133 Soil + [72] 
GP72 Green pepper + [27] 
LMG 5004 Contaminated plate + [63] 
LMG 1245 River Clay + [63] 
CD Cyclops (water) + This study 
PCL 1391 Tomato + [73] 
Pseudomonas corrugata    
LMG2172 Tomato - [74] 
Pseudomonas fluorescens   
2-79 Wheat - [75] 
C*1A1 Cucumber - [25] 
C6-11 Tobacco - [39] 
C6-16 Tobacco - [39] 
C10-180 Tobacco - This study 
C10-181 Tobacco - [39] 
C10-186 Tobacco - [40] 
C10-190 Tobacco - [40] 
C10-197 Tobacco - [39] 
C10-204 Tobacco - [39] 
C10-205 Tobacco - [39] 



CM1’A2 Cucumber - [76] 
F113 Sugar beet - [77] 
K92-1 Cucumber - This study 
K92-5 Tomato - This study 
K92-6 Tomato - This study 
K92-8 Tomato - This study 
K92-9 Tomato - This study 
K92-11 Cucumber - This study 
K92-12 Cucumber - This study 
K92-14 Cucumber - [41] 
K92-48 Cotton - [41]	  
K92-53 Cotton - [41]	  
K92-59 Cucumber - [41]	  
K93-2 Tobacco - [41]	  
K93-3 Tobacco - [41]	  
K93-7 Cucumber - [41]	  
K93-8 Cucumber - [41]	  
K93-9 Cucumber - [41]	  
K93-39 Wheat - [41]	  
K93-43 Wheat - This study 
K93-48 Wheat - [78] 
K93-52 Tomato - [41] 
K93-53 Tomato - [78] 
K94-18 Tomato - [41] 
K94-31 Cucumber - [41] 
K94-37 Cucumber - [41] 
K95-7 Cucumber - [78] 
KD Wheat - [78] 
LMG1794 Water - LMG collection 
P1.8 Earthworm - This study 
P1.31 Woodlouse (dead) - This study 
P3 Barley - [79] 
P12 Tobacco - [25] 
P96.25 Wheat - [41] 
P97.26 Tomato - [41] 
P97.39 Cucumber - [41] 
P97-1 Cucumber - [41] 
P97-2 Cucumber - [41] 
P97-6 Tomato - [41]	  
P97-20 Wheat - [41]	  
P97-26 Tomato - [41]	  
P97-27 Cucumber - [41]	  
P97-30 Wheat - [41]	  
PF36 Unknown - [63] 
Pf-153 Tobacco - [80] 
Q1-87 Wheat - [25] 
Q2-87 Wheat - [81] 
Q7-87 Wheat - [25] 
Q12-87 Wheat - [25] 
Q13-87 Wheat - [25] 
Q37-87 Wheat - [25] 
Q128-87 Wheat - [82] 
S7-29 Tobacco - [39] 
S7-46 Tobacco - [39] 
S7-52 Tobacco - [39] 
S7-42 Tobacco - [39] 
S8-110 Tobacco - [39] 
S8-130 Tobacco - [39] 
S8-151 Tobacco - [40] 
TM1A3 Tomato - [25] 



TM1A4 Tomato - [83] 
TM1B2 Tomato - [76] 
53K-B2 Unknown - This study 
Pseudomonas kilonensis   
 520-20 Soil - [84] 
Pseudomonas plecoglossicida    
PFCP1 Soil - [78] 
Pseudomonas protegensb   
C6.2 Tobacco + [78] 
C6-23 Tobacco + [78] 
CHA0 Tobacco + [85] 
K94-4 Tomato + [41] 
K94-5 Tomato + [41] 
K94-6 Cucumber + [25] 
K94-30 Cucumber + [41] 
K94-40 Cucumber + [41] 
K94-41 Cucumber + [41] 
M Sunflower + This study 
PF Wheat + [86] 
BRIP Cyclops (water) + This study 
Pf1 Tobacco + [25] 
Pf-5 Cotton + [87] 
Pf-68 Sunflower + [88] 
Pf-100 Sunflower + [88] 
PGNL1 Tobacco + [25] 
PGNR1 Tobacco + [25] 
PGNR2 Tobacco + [25] 
S8-62 Tobacco + [78] 
P6-1 Unknown + This study 
Pseudomonas putida    
8176 NCBI Milk - [89] 
KB1 Soil - [90] 
KT2440 Soil - [91] 
LMG2257 Soil - [64] 
Pseudomonas rhizospherae    
IH5 Rhizosphere grass - [92] 
Pseudomonas sp.   
A506 Pear leaves - [93] 
B13 Sewage - [94] 
CMR12a Cocoyam + [29] 
DSS73 Soil - [95] 
Jan Apple blossom - [96] 
Pseudomonas syringae    
ATCC 19310 Lilac - [97] 
LMG 1247 Lilac - LMG collection 
Rhodococcus sp.    
C125 River sediment - [98] 
Sphingomonas herbicidovorans    
MH Soil - [99] 
Sphingomonas paucimobilis    
UT26 Soil - [100] 
Staphylococcus aureus   
COL Hospital - [101] 
MW2  Human - [102] 
RN4220  Laboratory strain  [103] 
Staphylococcus epidermidis    
RP62A Hospital - [104] 
Streptomyces turgidiscabies    
Sy9103 Scab lesions - [105] 
Xanthomonas campestris    



ATCC33913 Plant - [78] 
Xenorhabdus bovienii   
13 Steinernema (Swiss soil) + This study 
14 Steinernema (Swiss soil) + This study 
25 Steinernema (Swiss soil) + This study 
26 Steinernema (Swiss soil) + This study 
27 Steinernema (Swiss soil) + This study 
28 Steinernema (Swiss soil) + This study 
29 Steinernema (Swiss soil) + This study 
30 Steinernema (Swiss soil) + This study 
31 Steinernema (Swiss soil) + This study 
33 Steinernema (Swiss soil) + This study 
35 Steinernema (Swiss soil) + This study 
36 Steinernema (Swiss soil) + This study 
37 Steinernema (Swiss soil) + This study 
39 Steinernema (Swiss soil) + This study 
44 Steinernema (Swiss soil) + This study 
61 Steinernema (Swiss soil) + This study 
64 Steinernema (Swiss soil) + This study 
C Steinernema (Swiss soil) + This study 
D Steinernema (Swiss soil) + This study 
F Steinernema (Swiss soil) + This study 
J Steinernema (Swiss soil) + This study 
SS-2004 Steinernema (Swiss soil) + [106] 
Xenorhabdus nematophila   
ATCC 19061 Steinernema carpocapsae + [106] 
a If a plant is indicated, the respective strain has been isolated from its roots or rhizosphere 
b P. protegens was recently proposed as an own species [26] and has been designated as P. fluorescens in 
previous publications	  



Table	  S2	  BLASTp	  analysis	  of	  P.	  protegens	  CHA0	  Fit	  components	  against	  completed	  bacterial	  whole	  genome	  sequences. 
Query BLAST hita Product Species % aa identity 

(similarity) 
Coverage e-value 

FitA NP_930357.1 plu3125 Photorhabdus luminescens subsp. 
laumondii TTO1 

69 (82) 98 0.0 

 YP_001448573.1 RTX toxin transporter Vibrio harveyi ATCC BAA-1116 59 (76) 97 0.0 
 YP_003041907.1 RTX toxin ABC transporter Photorhabdus asymbiotica subsp.  

asymbiotica ATCC 43949 
59 (76) 88 0.0 

 NP_928643.1 RTX toxin ABC transporter Photorhabdus luminescens subsp. 
laumondii TTO1 

58 (76) 88 0.0 

 NP_762443.2 RTX toxin transporter Vibrio vulnificus CMCP6 58 (76) 88 0.0 
FitB NP_930358.1 plu3126 Photorhabdus luminescens subsp. 

laumondii TTO1 
65 (83) 97 0.0 

 YP_001448572.1 VIBHAR_06454 Vibrio harveyi ATCC BAA-1116 52 (71) 94 3e-150 
 YP_002923190.1 ABC transporter Candidatus Hamiltonella defensa 5AT 50 (71) 94 2e-137 
 YP_070687.1 RTX toxin ABC transporter Yersinia pseudotuberculosis IP 32953 49 (67) 98 6e-113 
 YP_004298409.1 hemolysin transport protein Yersinia enterocolitica subsp. 

palearctica 105.5R 
47 (66) 98 4e-109 

FitC NP_930359.1 plu3127 Photorhabdus luminescens subsp. 
laumondii TTO1 

73 (84) 98 0.0 

 ZP_01956307.1 toxin secretion transporter Vibrio cholerae MZO-3 58 (74) 97 0.0 
 NP_762445.1 RTX toxin transporter Vibrio vulnificus CMCP6 59 (74) 97  
 NP_928641.1 plu1331 Photorhabdus luminescens subsp. 

laumondii TTO1 
57 (74) 99 0.0 

 YP_004298408.1 putative toxin transport protein Yersinia enterocolitica subsp. 
palearctica 105.5R 

58 (72) 98 0.0 

FitD NP_931332.1 Mcf protein Photorhabdus luminescens subsp. 
laumondii TTO1 

73 (83) 100 0.0 

 YP_003042199.1 MCF toxin Photorhabdus asymbiotica subsp.  
asymbiotica ATCC 43949 

71 (81) 97 0.0 

 NP_930360.1 plu3128 Photorhabdus luminescens subsp. 
laumondii TTO1 

67 (81) 69 0.0 

 YP_003712268.1 XNC1_2028 Xenorhabdus nematophila ATCC 19061 64 (78) 69 0.0 
 YP_003468304.1 Mcf protein Xenorhabdus bovienii SS-2004 69 (79) 74 0.0 
 YP_003712501.1 XNC1_2265 Xenorhabdus nematophila ATCC 19061 65 (76) 63 0.0 



 EGU44028.1 Mcf2 Vibrio splendidus ATCC 33789 29 (48) 65 0.0 
       
FitE ZP_10648180.1 PSEBR_a511 Pseudomonas brassicacearum subsp.  

brassicacearum NFM421 
62 (79) 89 4e-159 

 YP_346224.1 Type I secretion outer membrane protein, TolC Pseudomonas fluorescens Pf0-1 61 (78) 90 7e-159 
 YP_257681.1 TolC family type I secretion outer membrane 

protein 
Pseudomonas protegens Pf-5 61 (78) 90 2e-156 

 EGH31280.1 Type I secretion outer membrane protein, TolC Pseudomonas syringae  
pv. japonica str. M301072 

62 (79) 90 5e-155 

 ZP_07003042.1| Type I secretion outer membrane protein, TolC 
precursor 

Pseudomonas savastanoi pv. savastanoi 
NCPPB 3335 

63 (79) 88 1e-154 

FitF YP_285112.1 PAS/PAC sensor hybrid histidine kinase Dechloromonas aromatica RCB (beta) 41 (57) 48 1e-106 
 YP_005041177.1 Hybrid sensor histidine kinase Azospirillum lipoferum 4B 38 (60) 61 3e-100 
 YP_865134.1 multi-sensor hybrid histidine kinase Magnetococcus marinus MC-1 37 (58) 49 4e-98 
 YP_004514611.1 PAS domain-containing protein Thiocystis violascens DSM 198 40 (58) 66 6e-98 
 YP_005050479.1 multi-sensor hybrid histidine kinase Methylomonas methanica MC09] 34 (54) 67 9e-98 
FitG YP_004499875.1 LysR family transcriptional regulator Serratia sp. AS12 45 (65) 98 3e-79 

 YP_348645.1 LysR family transcriptional regulator Pseudomonas fluorescens Pf0-1 45 (64) 95 7e-79 
 YP_260488.1 LysR family transcriptional regulator Pseudomonas protegens Pf-5 46 (63) 95 6e-76 
 ZP_07775323.1 LysR family transcriptional regulator Pseudomonas fluorescens WH6 45 (61) 97 2e-73 
 YP_001007048.1 LysR family transcriptional regulator Yersinia enterocolitica  

subsp. enterocolitica 8081 42 (64) 97 2e-73 

FitH YP_005025997.1 response regulator receiver modulated metal 
dependent phosphohydrolase Vibrio sp. EJY3 (gamma) 54 (76) 36 0.0 

 NP_441314.1 regulatory components of sensory transduction 
system Synechocystis sp. PCC 6803 (cyano) 53 (74) 36 9e-33 

 YP_002954478.1 response regulator receiver protein Desulfovibrio magneticus RS-1 (delta) 47 (62) 44 2e-32 
 YP_006416106.1 response regulator containing a CheY-like 

receiver domain and an HD-GYP domain Thiocystis violascens DSM 198 (gamma) 52 (72) 35 1e-31 

 YP_421203.1 response regulator Magnetospirillum magneticum AMB-1 
(alpha) 52 (68) 39 5e-31 

A total of 1234 completed genomic sequences were included in BLASTp searches. Highly identical sequences (≤ 2% divergence) within the 
same species were omitted. 	  



 
 
Figure S1 Insecticidal activity correlates with presence of the fitD gene. Insect 
mortality of G. mellonella larvae four days after injection of 4 × 104 cells of 17 Fit 
producing and 13 non-producing Pseudomonas strains. Each strain was tested on a 
total of 30 larvae (five replicate plates with six larvae per plate). Bars show average of 
insect mortality for each strain.	   Error bars show standard error of the mean. Fit+ 
strains were significantly different from Fit- based on Wilcoxon rank sum test 
grouped by Fit+ and Fit- strains (P< 0.05).	  
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