8,497 research outputs found

    Decoupling the coupled DGLAP evolution equations: an analytic solution to pQCD

    Full text link
    Using Laplace transform techniques, along with newly-developed accurate numerical inverse Laplace transform algorithms, we decouple the solutions for the singlet structure function Fs(x,Q2)F_s(x,Q^2) and G(x,Q2)G(x,Q^2) of the two leading-order coupled singlet DGLAP equations, allowing us to write fully decoupled solutions: F_s(x,Q^2)={\cal F}_s(F_{s0}(x), G_0(x)), G(x,Q^2)={\cal G}(F_{s0}(x), G_0(x)). Here Fs{\cal F}_s and G\cal G are known functions---found using the DGLAP splitting functions---of the functions Fs0(x)≡Fs(x,Q02)F_{s0}(x) \equiv F_s(x,Q_0^2) and G0(x)≡G(x,Q02)G_{0}(x) \equiv G(x,Q_0^2), the chosen starting functions at the virtuality Q02Q_0^2. As a proof of method, we compare our numerical results from the above equations with the published MSTW LO gluon and singlet FsF_s distributions, starting from their initial values at Q02=1GeV2Q_0^2=1 GeV^2. Our method completely decouples the two LO distributions, at the same time guaranteeing that both distributions satisfy the singlet coupled DGLAP equations. It furnishes us with a new tool for readily obtaining the effects of the starting functions (independently) on the gluon and singlet structure functions, as functions of both Q2Q^2 and Q02Q_0^2. In addition, it can also be used for non-singlet distributions, thus allowing one to solve analytically for individual quark and gluon distributions values at a given xx and Q2Q^2, with typical numerical accuracies of about 1 part in 10510^5, rather than having to evolve numerically coupled integral-differential equations on a two-dimensional grid in x,Q2x, Q^2, as is currently done.Comment: 6 pages, 2 figure

    Measurements of farfield sound generation from a flow-excited cavity

    Get PDF
    Results of 1/3-octave-band spectral measurements of internal pressures and the external acoustic field of a tangentially blown rectangular cavity are compared. Proposed mechanisms for sound generation are reviewed, and spectra and directivity plots of cavity noise are presented. Directivity plots show a slightly modified monopole pattern. Frequencies of cavity response are calculated using existing predictions and are compared with those obtained experimentally. The effect of modifying the upstream boundary layer on the noise was investigated, and its effectiveness was found to be a function of cavity geometry and flow velocity

    Evaluation of the Langley 4- by 7-meter tunnel for propeller noise measurements

    Get PDF
    An experimental and theoretical evaluation of the Langley 4- by 7- Meter Tunnel was conducted to determine its suitability for obtaining propeller noise data. The tunnel circuit and open test section are described. An experimental evaluation is performed using microphones placed in and on the tunnel floor. The reflection characteristics and background noise are determined. The predicted source (propeller) near-field/far-field boundary is given using a first-principles method. The effect of the tunnel-floor boundry layer on the noise from the propeller is also predicted. A propeller test stand used for part of his evaluation is also described. The measured propeller performance characteristics are compared with those obtained at a larger scale, and the effect of the test-section configuration on the propeller performance is examined. Finally, propeller noise measurements were obtained on an eight-bladed SR-2 propeller operating at angles of attack -8 deg, 0 deg, and 4.6 deg to give an indication of attainable signal-to-noise ratios

    All Adults Once Were Children

    Get PDF
    Issue Editor, Robert Block\u27s, point of view and summary of the articles in New Morbidities 2.
    • …
    corecore