585 research outputs found
Secular Evolution and the Formation of Pseudobulges in Disk Galaxies
We review internal processes of secular evolution in galaxy disks,
concentrating on the buildup of dense central features that look like
classical, merger-built bulges but that were made slowly out of disk gas. We
call these pseudobulges. As an existence proof, we review how bars rearrange
disk gas into outer rings, inner rings, and gas dumped into the center. In
simulations, this gas reaches high densities that plausibly feed star
formation. In the observations, many SB and oval galaxies show central
concentrations of gas and star formation. Star formation rates imply plausible
pseudobulge growth times of a few billion years. If secular processes built
dense central components that masquerade as bulges, can we distinguish them
from merger-built bulges? Observations show that pseudobulges retain a memory
of their disky origin. They have one or more characteristics of disks: (1)
flatter shapes than those of classical bulges, (2) large ratios of ordered to
random velocities indicative of disk dynamics, (3) small velocity dispersions,
(4) spiral structure or nuclear bars in the bulge part of the light profile,
(5) nearly exponential brightness profiles, and (6) starbursts. These
structures occur preferentially in barred and oval galaxies in which secular
evolution should be rapid. So the cleanest examples of pseudobulges are
recognizable. Thus a large variety of observational and theoretical results
contribute to a new picture of galaxy evolution that complements hierarchical
clustering and merging.Comment: 92 pages, 21 figures in 30 Postscript files; to appear in Annual
Review of Astronomy and Astrophysics, Vol. 42, 2004, in press; for a version
with full resolution figures, see
http://chandra.as.utexas.edu/~kormendy/ar3ss.htm
Shape-induced force fields in optical trapping
Advances in optical tweezers, coupled with the proliferation of two-photon polymerization systems, mean that it is now becoming routine to fabricate and trap non-spherical particles. The shaping of both light beams and particles allows fine control over the flow of momentum from the optical to mechanical regimes. However, understanding and predicting the behaviour of such systems is highly complex in comparison with the traditional optically trapped microsphere. In this Article, we present a conceptually new and simple approach based on the nature of the optical force density. We illustrate the method through the design and fabrication of a shaped particle capable of acting as a passive force clamp, and we demonstrate its use as an optically trapped probe for imaging surface topography. Further applications of the design rules highlighted here may lead to new sensors for probing biomolecule mechanics, as well as to the development of optically actuated micromachines
The Origin of Minus-end Directionality and Mechanochemistry of Ncd Motors
Adaptation of molecular structure to the ligand chemistry and interaction with the cytoskeletal filament are key to understanding the mechanochemistry of molecular motors. Despite the striking structural similarity with kinesin-1, which moves towards plus-end, Ncd motors exhibit minus-end directionality on microtubules (MTs). Here, by employing a structure-based model of protein folding, we show that a simple repositioning of the neck-helix makes the dynamics of Ncd non-processive and minus-end directed as opposed to kinesin-1. Our computational model shows that Ncd in solution can have both symmetric and asymmetric conformations with disparate ADP binding affinity, also revealing that there is a strong correlation between distortion of motor head and decrease in ADP binding affinity in the asymmetric state. The nucleotide (NT) free-ADP (?-ADP) state bound to MTs favors the symmetric conformation whose coiled-coil stalk points to the plus-end. Upon ATP binding, an enhanced flexibility near the head-neck junction region, which we have identified as the important structural element for directional motility, leads to reorienting the coiled-coil stalk towards the minus-end by stabilizing the asymmetric conformation. The minus-end directionality of the Ncd motor is a remarkable example that demonstrates how motor proteins in the kinesin superfamily diversify their functions by simply rearranging the structural elements peripheral to the catalytic motor head domain
Aortic valvuloplasty of calcific aortic stenosis with monofoil and trefoil balloon catheters: practical considerations
In order to evaluate the relation between balloon design (monofoil, trefoil) and valvular configuration, experimental aortic valvuloplasty was performed in four post-mortem hearts with calcific aortic sten
Recommended from our members
Diamonds, gold and crime displacement: Hatton Garden, and the evolution of organised crime in the UK
The 2015 Hatton Garden Heist was described as the ‘largest burglary in English legal history’. However, the global attention that this spectacular crime attracted to ‘The Garden’ tended to concentrate upon the value of the stolen goods and the vintage of the burglars. What has been ignored is how the burglary shone a spotlight into Hatton Garden itself, as an area with a unique ‘upperworld’ commercial profile and skills cluster that we identify as an incubator and facilitator for organised crime. The Garden is the UK’s foremost jewellery production and retail centre and this paper seeks to explore how Hatton Garden’s businesses integrated with a fluid criminal population to transition, through hosting lucrative (and bureaucratically complex) VAT gold frauds from 1980 to the early 1990s, to become a major base for sophisticated acquisitive criminal activities. Based on extensive interviews over a thirty year period, evidence from a personal research archive and public records, this paper details a cultural community with a unique criminal profile due to the particularities of its geographical location, ethnic composition, trading culture, skills base and international connections. The processes and structures that facilitate criminal markets are largely under-researched (Antonopoulos et al. 2015: 11), and this paper considers how elements of Hatton Garden’s ‘upperworld’ businesses integrated with project criminals, displaced by policing strategies, to effect this transition
Revisiting consistency with random utility maximisation: theory and implications for practical work
While the paradigm of utility maximisation has formed the basis of the majority of applications in discrete choice modelling for over 40 years, its core assumptions have been questioned by work in both behavioural economics and mathematical psychology as well as more recently by developments in the RUM-oriented choice modelling community. This paper reviews the basic properties with a view to explaining the historical pre-eminence of utility maximisation and addresses the question of what departures from the paradigm may be necessary or wise in order to accommodate richer behavioural patterns. We find that many, though not all, of the behavioural traits discussed in the literature can be approximated sufficiently closely by a random utility framework, allowing analysts to retain the many advantages that such an approach possesses
Do oral aluminium phosphate binders cause accumulation of aluminium to toxic levels?
<p>Abstract</p> <p>Background</p> <p>Aluminium (Al) toxicity was frequent in the 1980s in patients ingesting Al containing phosphate binders (Alucaps) whilst having HD using water potentially contaminated with Al. The aim of this study was to determine the risk of Al toxicity in HD patients receiving Alucaps but never exposed to contaminated dialysate water.</p> <p>Methods</p> <p>HD patients only treated with Reverse Osmosis(RO) treated dialysis water with either current or past exposure to Alucaps were given standardised DFO tests. Post-DFO serum Al level > 3.0 μmol/L was defined to indicate toxic loads based on previous bone biopsy studies.</p> <p>Results</p> <p>39 patients (34 anuric) were studied. Mean dose of Alucap was 3.5 capsules/d over 23.0 months. Pre-DFO Al levels were > 1.0 μmol/L in only 2 patients and none were > 3.0 μmol/L. No patients had a post DFO Al levels > 3.0 μmol/L. There were no correlations between the serum Al concentrations (pre-, post- or the incremental rise after DFO administration) and the total amount of Al ingested.</p> <p>No patients had unexplained EPO resistance or biochemical evidence of adynamic bone.</p> <p>Conclusions</p> <p>Although this is a small study, oral aluminium exposure was considerable. Yet no patients undergoing HD with RO treated water had evidence of Al toxicity despite doses equivalent to 3.5 capsules of Alucap for 2 years. The relationship between the DFO-Al results and the total amount of Al ingested was weak (R<sup>2 </sup>= 0.07) and not statistically significant. In an era of financial prudence, and in view of the recognised risk of excess calcium loading in dialysis patients, perhaps we should re-evaluate the risk of using Al-based phosphate binders in HD patients who remain uric.</p
Acute and repetitive fronto-cerebellar tDCS stimulation improves mood in non-depressed participants
Molecular Biomechanics: The Molecular Basis of How Forces Regulate Cellular Function
Recent advances have led to the emergence of molecular biomechanics as an essential element of modern biology. These efforts focus on theoretical and experimental studies of the mechanics of proteins and nucleic acids, and the understanding of the molecular mechanisms of stress transmission, mechanosensing and mechanotransduction in living cells. In particular, single-molecule biomechanics studies of proteins and DNA, and mechanochemical coupling in biomolecular motors have demonstrated the critical importance of molecular mechanics as a new frontier in bioengineering and life sciences. To stimulate a more systematic study of the basic issues in molecular biomechanics, and attract a broader range of researchers to enter this emerging field, here we discuss its significance and relevance, describe the important issues to be addressed and the most critical questions to be answered, summarize both experimental and theoretical/computational challenges, and identify some short-term and long-term goals for the field. The needs to train young researchers in molecular biomechanics with a broader knowledge base, and to bridge and integrate molecular, subcellular and cellular level studies of biomechanics are articulated.National Institutes of Health (U.S.) (grant UO1HL80711-05 to GB)National Institutes of Health (U.S.) (grant R01GM076689-01)National Institutes of Health (U.S.) (grant R01AR033236-26)National Institutes of Health (U.S.) (grant R01GM087677-01A1)National Institutes of Health (U.S.) (grant R01AI44902)National Institutes of Health (U.S.) (grant R01AI38282)National Science Foundation (U.S.) (grant CMMI-0645054)National Science Foundation (U.S.) (grant CBET-0829205)National Science Foundation (U.S.) (grant CAREER-0955291
Reframing professional development through understanding authentic professional learning
Continuing to learn is universally accepted and expected by professionals and other stakeholders across all professions. However, despite changes in response to research findings about how professionals learn, many professional development practices still focus on delivering content rather than enhancing learning. In exploring reasons for the continuation of didactic practices in professional development, this article critiques the usual conceptualization of professional development through a review of recent literature across professions. An alternative conceptualization is proposed, based on philosophical assumptions congruent with evidence about professional learning from seminal educational research of the past two decades. An argument is presented for a shift in discourse and focus from delivering and evaluating professional development programs to understanding and supporting authentic professional learning
- …
