14,758 research outputs found
Analysis of noise measured from a propeller in a wake
In this experimental study, the acoustic characteristics of a propeller operating in a wake were studied. The propeller performance and noise were measured from two 0.25 scale propellers operating in an open jet anechoic flow environment with and without a wake. One propeller had NACA 16 series sections; the other, ARA-D. Wake thicknesses of 1 and 3 propeller chords were generated by an airfoil which spanned the full diameter of the propeller. The airfoil wake profiles were measured. Noise measurements were made in and out of the flow. The propellers were operated at 40, 83, and 100 inf of thrust. The acoustic data are analyzed, and the effects on the overall sound pressure level (OASPL) and scaled A weighted sound level L sub A with propeller thrust, wake thickness, and observer location are presented. The analysis showed that, generally, the wake increased the overall noise (OASPL) produced by the propeller; increased the harmonic content of the noise, thus the scaled L sub a; and produced an azimuthal dependence. With few exceptions, both propellers generally produced the same trends in delta OASPL and delta L sub a with thrust and wake thickness
Measurements of farfield sound generation from a flow-excited cavity
Results of 1/3-octave-band spectral measurements of internal pressures and the external acoustic field of a tangentially blown rectangular cavity are compared. Proposed mechanisms for sound generation are reviewed, and spectra and directivity plots of cavity noise are presented. Directivity plots show a slightly modified monopole pattern. Frequencies of cavity response are calculated using existing predictions and are compared with those obtained experimentally. The effect of modifying the upstream boundary layer on the noise was investigated, and its effectiveness was found to be a function of cavity geometry and flow velocity
Noise response of cavities of varying dimensions at subsonic speeds
An expression for the Strouhal number of lengthwise cavity oscillations is obtained which includes the effect of length-to-depth ratio. This expression, which agrees well with the experimental data, is also used to predict the Mach number at which cavity acoustic response is maximum. Interaction between lengthwise and depthwise modes is seen to occur at Mach numbers from 0.1 to 0.5. Cavity shape is shown to affect the noise spectra in generating either a broadband or narrowband signal
Evaluation of the Langley 4- by 7-meter tunnel for propeller noise measurements
An experimental and theoretical evaluation of the Langley 4- by 7- Meter Tunnel was conducted to determine its suitability for obtaining propeller noise data. The tunnel circuit and open test section are described. An experimental evaluation is performed using microphones placed in and on the tunnel floor. The reflection characteristics and background noise are determined. The predicted source (propeller) near-field/far-field boundary is given using a first-principles method. The effect of the tunnel-floor boundry layer on the noise from the propeller is also predicted. A propeller test stand used for part of his evaluation is also described. The measured propeller performance characteristics are compared with those obtained at a larger scale, and the effect of the test-section configuration on the propeller performance is examined. Finally, propeller noise measurements were obtained on an eight-bladed SR-2 propeller operating at angles of attack -8 deg, 0 deg, and 4.6 deg to give an indication of attainable signal-to-noise ratios
Experimental investigation of reactor-loop transients during startup of a simulated SNAP-8 system
Primary loop transients during startup of Rankine cycle space power system in SNAP 8 simulato
Advanced Langmuir Probe (LP)
The dynamic response of the MK-2 version of the Langmuir probe amplifier was studied. The settling time of the step response is increased by: (1) stray node-to-ground capacitance at series connections between high value feedback resistors; and (2) input capacitance due to the input cable, FET switches, and input source follower. The stray node-to-ground capacitances can be reduced to tolerable levels by elevating the string of feedback resistors above the printing board. A new feedback network was considered, with promising results. The design uses resistances having much lower nominal values, thereby minimizing the effect of stray capacitances. Faster settling times can be achieved by using an operational amplifier having a higher gain-bandwidth product
Nonflammable, antistatic, and heat-sealable film
Antistatic, heat-sealable, nonflammable films prepared from polyvinylidene fluoride and polyvinylidene chloride resin
Harmonization of space-borne infra-red sensors measuring sea surface temperature
Sea surface temperature (SST) is observed by a constellation of sensors, and SST retrievals
are commonly combined into gridded SST analyses and climate data records (CDRs). Differential
biases between SSTs from different sensors cause errors in such products, including feature artefacts.
We introduce a new method for reducing differential biases across the SST constellation, by reconciling
the brightness temperature (BT) calibration and SST retrieval parameters between sensors. We use the
Advanced Along-Track Scanning Radiometer (AATSR) and the Sea and Land Surface Temperature
Radiometer (SLSTR) as reference sensors, and the Advanced Very High Resolution Radiometer
(AVHRR) of the MetOp-A mission to bridge the gap between these references. Observations across a
range of AVHRR zenith angles are matched with dual-view three-channel skin SST retrievals from
the AATSR and SLSTR. These skin SSTs act as the harmonization reference for AVHRR retrievals
by optimal estimation (OE). Parameters for the harmonized AVHRR OE are iteratively determined,
including BT bias corrections and observation error covariance matrices as functions of water-vapor
path. The OE SSTs obtained from AVHRR are shown to be closely consistent with the reference sensor
SSTs. Independent validation against drifting buoy SSTs shows that the AVHRR OE retrieval is stable
across the reference-sensor gap. We discuss that this method is suitable to improve consistency across
the whole constellation of SST sensors. The approach will help stabilize and reduce errors in future
SST CDRs, as well as having application to other domains of remote sensing
Glucocorticoid receptor expression in 20 solid tumor types using immunohistochemistry assay.
BackgroundGlucocorticoid receptor (GR) activity plays a role in many aspects of human physiology and may play a crucial role in chemotherapy resistance in a wide variety of solid tumors. A novel immunohistochemistry (IHC) based assay has been previously developed and validated in order to assess GR immunoreactivity in triple-negative breast cancer. The current study investigates the standardized use of this validated assay to assess GR expression in a broad range of solid tumor malignancies.MethodsArchived formalin-fixed paraffin-embedded tumor bank samples (n=236) from 20 different solid tumor types were analyzed immunohistochemically. Nuclear staining was reported based on the H-score method using differential intensity scores (0, 1+, 2+, or 3+) with the percent stained (out of at least 100 carcinoma cells) recorded at each intensity.ResultsGR was expressed in all tumor types that had been evaluated. Renal cell carcinoma, sarcoma, cervical cancer, and melanoma were those with the highest mean H-scores, indicating high levels of GR expression. Colon, endometrial, and gastric cancers had lower GR staining percentages and intensities, resulting in the lowest mean H-scores.ConclusionA validated IHC assay revealed GR immunoreactivity in all solid tumor types studied and allowed for standardized comparison of reactivity among the different malignancies.ImpactBaseline expression levels of GR may be a useful biomarker when pharmaceutically targeting GR in research or clinical setting
- …
