Final Project Report

Advanced Langmuir Probe

Grant No. NAG5-419

Prepared by:
N. R. Voronka
B. P. Block
G. R. Carignan

Space Physics Research Laboratory
University of Michigan
Ann Arbor, Michigan 48109-2143

TABLE OF CONTENTS

I. Introduction

II. Summary of Project Activities
III. References

1. An Analytic and Experimental Study of Variable Gain Langmuir Probe Amplifier Circuits (July 28, 1983)
2. Report on the Implementation and Performance of an Improved Langmuir Probe Amplifier (February 13, 1986)
3. Report on the Implementation of a Dedicated Processor for the Advanced Langmuir Probe. (June 4, 1987)
4. Report on the Implementation of a High Frequency Switching Power Converter for the Advanced Langmuir Probe (September 18, 1990)

Final Project Report

Advanced Langmuir Probe

Grant No. NAG5-419

Prepared by:
N. R. Voronka
B. P. Block
G. R. Carignan

University of Michigan
Ann Arbor, Michigan 48109-2143

TABLE OF CONTENTS

I. Introduction
II. Summary of Project Activities
III. References

1. An Analytic and Experimental Study of Variable Gain Langmuir Probe Amplifier Circuits (July 28, 1983)
2. Report on the Implementation and Performance of an Improved Langmuir Probe Amplifier (February 13, 1986)
3. Report on the Implementation of a Dedicated Processor for the Advanced Langmuir Probe. (June 4, 1987)
4. Report on the Implementation of a High Frequency Switching Power Converter for the Advanced Langmuir Probe (September 18, 1990)

Introduction

For more that two decades, the staff of the Space Physics Research Laboratory (SPRL) has collaborated with the Goddard Space Flight Center (GSFC) in the design and implementation of Langmuir Probes (LP). This program of probe development under the direction of Larry Brace of GSFC has evolved methodically with innovations to: improve measurement precision, increase the speed of measurement, and reduce the weight, size, power consumption and data rate of the instrument.

During the course of probe development of the Pioneer Venus and Dynamics Explorer systems, it was determined that the speed of the electrometer, which is the basic detector of the LP, was the rate determining component of the instrument. Under NASA Contract NAS5-27305 an in depth study of electrometer response was done, which resulted in a list of recommendations to improve the speed of the electrometer without sacrificing any precision. Under this contract, these improvements were to be implemented, and the characteristics of the modified electrometer were to be measured. To further increase the speed of measurements, the measurement algorithm was to be modified. The implementation of these changes was to be realized in a configuration of reduced size, weight, and power. All of these improvements characterize the Advanced Langmuir Probe (ALP).

Summary of Project Activities

The report by J. Dittmar and A. Macnee proposed techniques to improve the speed and accuracy of the LP MK-2 pre-amplifier. Based on these recommendations, a laboratory model was constructed using components and techniques that are directly applicable to a flight program. The amplifier's performance was studied and it was concluded that the new amplifier had improved step-input settling times, recovery from range changes and recovery from saturation. The worst case settling time of the preamplifier was improved by nearly an order of magnitude.

The next phase of this study was the development and implementation of the improved measurement algorithm. This five-point algorithm was a significant improvement over the algorithms used on Pioneer Venus and Dynamics explorer. Through the use of a microprocessor, this algorithm was implemented to reduce measurement time and required data rate, thereby increasing temporal resolution of the instrument. A dedicated processor system based on the Harris 80 C 86 was developed which produces the voltage applied to the probe and measures the resultant probe current.

The measurement algorithms were implemented and tested under a real-time executive (Ready Systems VRTX). Also, application software was written to allow the graphical display of acquired data. The graphic display of the V-A function allowed easy evaluation of the five-point algorithm and the accuracy of the plasma simulators.

The electrometers designed and implemented at SPRL are floating atop the applied voltage to simplify the circuitry that generates this voltage. However, this exacerbates the problem of switching power converter noise in the measurement. In this study, the problem was solved by increasing the frequency of the power converter so that its fundamental frequency was outside the response bandwidth of the current amplifier. When simulated plasma measurements were made, dramatic improvements resulted.

The last phase of this study began the development of flight electronics to test the above improvements on a sounding rocket. In addition to the ALP, these electronics will support an additional instrument. The Solar Flux Monitor (SFM) is an instrument that will be used to measure Extreme Ultraviolet Radiation, and is being developed by Dr. Walter Hoegy and Larry Brace of GSFC. Since measurements with the SFM require an applied voltage and produce a current output in similiar ranges as the ALP, the measurement electronics for the SFM will be derived closely from the work performed during this study. This effort is being continued on NASA Contract NAG5-1691.

UNIVERSITY OF MICHIGAN
SPACE PHYSICS RESEARCH LABORATORY
July 28, 1983

MEMO TO: G. R. Carignan
FROM: James Dittmar and Alan Mane
SUBJECT: An Analytic and Experimental Study of Variable Gain Langmuir Probe Amplifier Circuits

SUMMARY

The dynamic response of the $M K-2$ version of the Langmuir probe amplifier has been studied. The settling time of the step response is increased by:

1) stray node-to-ground capacitance at series connections between high value feedback resistors;
2) input capacitances due to the input cable, FET switches; and input source follower.

Step response measurements show that the $M K-2$ circuit was inadequately compensated for stray and input capacitances. On the highest gain setting, the response was underdamped, showing 96 percent overshoot, and a settling time of 1 millisecond.

The stray node-to-ground capacitances can be reduced to tolerable levels by elevating the string of feedback resistors above the printed circuit board. This isolates the series connections from ground paths. Under these conditions, a frequency response haying Butterworth characteristics was achieved, with no compensating components. The 90 percent rise time was about 200 microseconds at the highest gain setting. (The input cable capacitance was 12 picofarads.)

A new feedback network was considered, with promising results. The design uses resistances having much lower nominal values, thereby minimizing the ℓ ffect of stray capacitances. The measured rise time at the highest gain setting was 200 microseconds, which is the same result achieved for the elevated resistor case. (The same printed circuit board was used, and the input cable capacitance was 12 picofarads.)

Still faster settling times can be achieved by using an operational amplifier having a higher gain-bandwidth product. The rise time was reduced to 77 microseconds by substituting an operational amplifier having a 6.0 MHz gain-bandwidth product into the redesigned circuit.

The basic MK-2 amplifier is shown in Figure 1 , and the step response measurements made are summarized in Table 1. Two versions of the new feeback design are shown in figures 2 and 3 , and the measurements made are summarized in Table 2. The analytical expressions for selecting the compensation components, and for predicting the step response rise times are summarized in Table 3.

ANALYSIS

The basic Langmuir probe amplifier is shown in figure 1. Using feedback analysis, the forward transfer impedance, $z_{f t}$, is approximately:

$$
Z_{f t}=\frac{v_{0}}{i_{i n}}=\frac{\frac{-\alpha R_{f}}{\left(\frac{s}{a}+1\right)\left(\frac{s}{g}+1\right)}}{1+\frac{R_{f}\left(\frac{s}{f}+1\right)\left(\frac{s}{x}+1\right)}{\left(\frac{s}{a}+1\right)\left(\frac{s}{g}+1\right)\left(\frac{s}{c}+(1) R_{f}^{\prime}\right.}}
$$

where α is the open loop voltage gain of the operational amplifier, and

$$
\begin{aligned}
& \frac{1}{g}=R_{f}\left(C_{i n}+C_{f}\right) \\
& C_{i n}=C_{\text {amplifier }}+C_{c a b l e} \\
& \frac{1}{E}=R_{f} C_{f} \\
& \frac{1}{C}=R_{c}\left(C_{x}+C_{c}\right) \\
& \frac{1}{a}=\frac{a}{2 \pi G B} \\
& \text { and, } \frac{1}{x}=R_{c} C_{x}
\end{aligned}
$$

The gain-bandwidth product of the operational amplifier is GB, and $C_{i n}$ is the total input capacitance from the input cable, $F E T$ switches, and input source follower.

In the $M K-2$ circuit, $\frac{l}{c}$ is adjusted to equal $\frac{l}{f}$. Cancelling terms, and simplifying:

$$
z_{f t}=\frac{-\alpha R_{f} a g}{s^{2}+\left(a+g+\frac{\alpha a g}{x}\right) s+\alpha a g}
$$

The $\frac{1}{x}$ term can be adjusted to compensate for input capacitance, providing $c_{x} \ll c_{c}$ so that the $\frac{1}{f}$ term will still cancel the $\frac{1}{c}$ term. Conversely, if the composite FET - operational amplifier is unstable as a voltage follower, C_{x} must be large enough to prevent oscillation on the low gain settings.

For a step response having minimum rise time and (no , overshoot, (Thomson response), the following relationship exists:

$$
s^{2}+\left(a+g+\frac{\alpha a g}{x}\right) s+a a g=s^{2}+2 \sqrt{3} w_{0} s+4 w_{0}^{2}
$$

where ${ }_{0}$ is the imaginary part of the complex conjugate roots. Equating terms, and solving for the compensation time constant, $\frac{1}{x}$,

$$
\frac{1}{x}=\frac{\sqrt{3 a g-(a+g)}}{\alpha a g}=\sqrt{\frac{3}{\alpha a g}}
$$

For a Butterworth response, the result is:

$$
\frac{1}{x} \approx \sqrt{\frac{2}{\alpha a g}}
$$

The most favorable response is obtained by a design in between the Thomson and Butterwort designs.

The above analysis neglects stray node-to-ground capacitances, so it cannot be strictly applied to the MK -2 circuit. (It can be applied if the feedback resistors are isolated from ground paths, so that the stray node-to-ground capacitances are reduced to much lower proportions.) However, it can be used to solve for a minimum value for the compensating capacitor, C_{x}. For example, using the Butiterworth criterion, if $-\quad C_{i n}=26 \mathrm{pf}, \quad C_{c}=18 \mathrm{nf}, \quad C_{f}=0.1 \mathrm{pf}, \quad \mathrm{R}_{\mathrm{f}}=1 \mathrm{giganohm}$, $G B=1.35 \mathrm{MHz}$, and $R_{c}=11.3$ k-ohms, then $\frac{1}{x}=78.4$ microseconds, and $C_{x}=1 / x R_{c}=6.94$ nf. The inequality, $C_{x}<\left\langle C_{c}\right.$, is not met, and the circuit cannot be completely compensated for input capacitance by adjusting C_{x}.

Alternatives to the $M K-2$ feedback circuit are shown in Figures 2 and 3. Because the feedback resistors are lower in value, and lumped, the problem of stray capacitance is greatly reduced. The circuit can be compensated for input capacitance by C_{f} in parallel with R_{f}, or by C_{x} in parallel with R_{c}. For the lower gain settings, C_{f} should be used to insure the stability of the amplifier. . For the highest gain setting, C_{x} is preferred, because its value will be more practical, and easier to trim, than the corresponding C_{f}.

The analysis for this circuit is similar to the analysis for the $M K-2$ circuit. The forward transfer impedance, y_{f}, is approximately:

$$
z_{f t}=\frac{\frac{-\alpha R_{f}}{\left(\frac{S}{a}+1\right)\left(\frac{S}{g}+1\right)}}{1+\frac{\alpha R_{f}\left(\frac{S}{\Gamma}+1\right)}{\left(\frac{S}{a}+1\right)\left(\frac{S}{g}+1\right) R_{f} k\left(\frac{S}{c}+1\right)}}
$$

where K is the divider ratio, (e.g.. $\left.K=\left(R_{1}+R_{c}\right) / R_{1}\right)$, and $1 / C=R_{c} R_{1} C x /\left(R_{1}+R_{c}\right)$. For large K, the $1 / C$ term can be neglected. The analysis also neglects the output resistance of the operational amplifier, so R_{1}, should be much greater than the output resistance if C_{x} is used. The $1 / \Gamma$ term is either $C_{f} R_{f}$ or $C_{x}{ }^{R}$, depending where, the compensating capacitor is placed.

For a Thomson response, the compensation time constant, $\frac{1}{\Gamma}$, $-\cdots \cdots$
is:

$$
\frac{1}{\Gamma}=\frac{\sqrt{3 a a g-(a+g)}}{a a g}=\sqrt{\frac{3 k}{a a g}}
$$

The unit step response, for $t>0$, is:

$$
H(t)=1-2 e^{-\sqrt{3} w_{0} t^{\prime}} \sin \left(w_{0} t+30^{\circ}\right)
$$

where $w_{0}=3 \sqrt{\frac{\alpha a g}{k}}$

For a Butterworth response, the results are:

$$
\begin{gathered}
H(t)=1-\sqrt{2} e^{\frac{1}{\Gamma}}=\sqrt{\frac{2 k}{\alpha a g}} \\
\text { and, } w_{0}=\sqrt{\frac{\alpha a g}{2 k}}
\end{gathered}
$$

For equal real poles, the denominator of ${ }_{f t}$ is a perfect square. The results are:

$$
\begin{gathered}
\frac{1}{\Gamma}=2 \sqrt{\frac{k}{\alpha a g}} \\
H(t)=1-e^{-\sigma t}[1+2 t], f o r, t>0 \\
\text { and, } c=\sqrt{\frac{a a c}{k}} .
\end{gathered}
$$

The most favorable response is obtained by a design in between the Butterwort and Thomson designs. The three types of response are compared in Figure 4.

The divider ratio should be large enough to insure small time constants due to the stray capacitances in the feedback network. The feedback resistors must also have low enough values to be lumped. Conversely, the divider ratio must be low enough to keep the circuit desensitized with respect to the operational amplifier open loop voltage gain. The analytical expressions needed to select the compensation components and to predict the step response rise times follow directly from the above analysis. They are summarized in Table 3.

NOISE

The root mean square output noise voltage due to the feedback resistor in the $M K-2$ circuit is $V_{n m}=i_{n m} R_{f M}$ where i_{n} is the root mean square noise current due to $R_{f M}$. The noise current is proportional to $1 / \sqrt{R_{f M}}$, so the noise voltage is proportional to $\sqrt{R_{f M}}$. For the redesigned circuit, the output noise voltage is $V_{n x}=i_{n r} k R_{f r^{\prime}}$ which is proportional to $k \sqrt{R_{f x}}$. The ratio of $V_{n r}$ to $V_{n m} i s k \sqrt{\frac{R_{f r}}{R_{f M}}}$, and $R_{f M}=k R_{f r}$. Therefore, the low frequency output noise voltage due to the feedback resistor in the redesigned circuit is \sqrt{K} times higher than for its counterpart in the $M K-2$ circuit.

RESULTS

Step response measurements were made on the $M K-2$ circuit, and on several variations of the new feedback design. Each circuit was breadboarded on the $M K-2$ printed circuit board, and housed in an aluminum chassis. The amplifier input was coupled through a 3.3 picofarad capacitor to a triangle wave generator with a 50 ohm source impedance. The triangle wave is differentiated by the coupling capacitor to give a square wave input current, the peak to peak value of which is (3.3 pf) (2) $\left(\Delta V_{i n} / \Delta t\right)$. The capacitance of the input cable, measured from the amplifier input end, was 12 picofarads.

Ciran analysis of the $M K-2$ feedback network shows that the stray node-to-ground capacitances can have a dominant giffect on the amplifier response. There is evidence of this in the measured ${\underset{\lambda}{\text { sef }}}_{\mathrm{f}}^{\mathrm{f}} \mathrm{r}$ response on the highest gain setting: Insertion or removal of the 1 nf compensating capacitor causes negigible change; and, in both cases, the response was underdamped, showing 96 percent overshoot, and a setting time of 1 millisecond. Figure 5 shows the step repsonse on the highest gain setting with, and without, the 1 nf capacitor.

When the 200 megohm resistors were mounted one inch above the printed circuit board, a response having Butterworth characteristics was achieved with $C_{f}=C_{c}=C_{x}=0$. This shows the dramatic consequences of reducing the stray node-to-ground capacitances. The absence of ringing owes to the coincidental compensation of input capacitance by the stray capacitance that
shunts the total feedback resistance. High overshoot and settling times were easily induced by adding small stray capacitances at the series connections of the feedback resistors. This confirms the importance of these capacitances in the $M K-2$ layout. The photographs in Figure 5 show the $M K-2$ response on the highest gain setting with the feedback resistors mounted above, and on, the circuit board.

The amplifier was unstable in the lowest two range settings with the 1 nf capacitor removed. The composite FET - operational amplifier was also unstable as a voltage follower. The operational amplifier alone as a voltage follower was stable, but showed increased overshoot and settling time with load capacitance. Careful measurements were made to characterize the 2N5906 and the HA2700, so that the circuit model would predict this instability. The models developed, and graphs comparing the actual and simulated step responses are shown in Figures 6 and 7 .

The first new design tested is shown in figure 2. The measured rise times for the three highest gain settings were 200 , 67, and 20 microseconds. The Eeedback capacitors required to compensate for the total input capacitance were 7.6, 1.4, and 27 picofarads, respectively. Compensation was aitempted by placing a capacitor across the top divider resistor, instead of across the feedback resistor, but the lowest two gain settings oscillated. This is explained by the instability of the composite voltage follower.

The photograph in Figure 8 shows the uncompensated response the highest gain setting. In this case, the forward transfer impedance is dominated by the $R_{f} C_{i n}$ time constant, and by the lowest pole of the operational amplifier. The amplifier input capacitance can be obtained from the ringing frequency, wo. The expression is:

$$
\text { Ion is: } \text { c amplifier }^{\text {Io }}\left\{\frac{1}{2 R_{f}\left(\frac{a \alpha}{k}-\sqrt{\left.\left(\frac{a \alpha}{k}\right)^{2}-w_{0}^{2}\right)}\right.}\right\}-c_{c a b l e}
$$

Averaging over the three measurements, the amplifier input capacitance was calculated to be 13.7 picofarads.

The circuit shown in Figure 3 combines two compensation schemes. Compensating the highest gain setting at the divider makes the response easier to adjust. Where $C_{f 4}$ could be less than 1 picofarad, C_{x} will be many times higher. The other ranges were compensated individually with capacitors shunting the feedback resistors. This insures the stability of the lowest ranges. Note that R_{1} should be much greater than the output resistance of the operational amplifier for the best results. The measured rise times were $200,52,19$, and 7.6 microseconds for the highest to lowest gain settings. The rise times with 48.5 picofarads added to the input were $340,92,25$ and 9.6 microseconds, respectively.

The analysis predicts that the compensated response for this circuit should not depend on the divider ratio of the highest
gain setting. This result was demonstrated by building a circuit for which $R_{f}=35$ megohms, and $K=28.6$. The measured rise times were 200 and 340 microseconds, for no added input capacitance, and for 48.5 picofarads added to the input. This is the same result obtained above, for $R_{f}=10$ megohms, and $k=101$. For $R_{f}=200$ megohms, $K=5$, the rise times were 230 and 360 microseconds, for no added input capacitance, and for 48.5 pisofarads added to the input. The slight increase is because the divider ratio is low, and the pole associated with $R_{c} r^{r} R_{1}$ r and C_{x} is closer to the compensation zero.

A PMI type OP-15 operatonal amplifier was substituted for the Harris HA2700 to test the dependence on gain-bandwidth product. The OP-15 has a gain-bandwidth of about 6.0 MHz . For the two cases above, the rise times were 90 and 150 microseconds for $R_{f}=30$ megohms, and 77.4 and 185 microseconds for $R_{f}=200$ megohms, and for the respective values of input capacitance. Comparing the OP-15 results with the HA 2700 results for the circuit with the higher divider ratio, there is a factor of 2.2 improvement in rise time. The analysis predicts, that the rise time will depend on the square root of the gain-bandwidth product. Checking this result, $6 \mathrm{MHz} / 1 ; 35 \mathrm{MHz}=4.84$, and $(2.2)^{2}=4.44$, and the theory is corroborated.

The circuit in figure 3 could be designed so that the compensation of the highest gain setting would exactly compensate the next lower gain setting. In other words for proper choice of $R_{f 4}$ and $C_{x}, C_{f 3}$ will not be needed. Experimentally, the next to
the highest gain setting was just slightly overcompensated with $C_{f 3}=0, R_{f 4}=35$ megohms, and C_{x} adjusted for a Thomson response on the highest gain setting. (The cable capacitance was 12 pf.)

CONCLUSIONS

The settling time of the MK-2 circuit is increased by stray node-to-ground capacitances in the feedback loop, and by input capacitance. The circuit does not adequately compensate for the ℓ
af capacitances can be reduced to acceptable proportions by mounting the string of high value feedback resistors above the printed circuit board. This would decrease the stray capacitances by isolating the series connections from ground paths. The technique would require considerable layout and construction care, and the circuit would still be undercompensated for input capacitance.

The settling time of the amplifier can be reduced by using a feedback network such as the one shown in figure 3. The feedback resistors are much lower in value than those used in the $M K-2$ circuit, and they c an be lumped. The resistance values are low enough to reduce the \quad affects of stray shunt capacitances to acceptable proportions. Lumping eliminates the stray node-to-ground capacitances, and is equivalent to mounting the feedback resistances above the board in the MK-2 circuit. The layout and construction of the new circuit is not as critical. The circuit can be compensated for input capacitance using components that are practical in value. The compensation can be talklored to each gain setting, and the number of components required is low. The circuits tested worked well in all of the above aspects.

Still faster settling times can be achieved by using an operational amplifier with higher gain-bandwidth product in the redesigned circuit. The compensated rise time is proportional to the reciprocal of the square root of the gain-band width product.

JD: scg

Figure 2 First new circuit.
Figure 3 Second new circuit.

Table 2 Step response measurements for circuits shown in figures 2 and 3.

Response type	C_{x}		σ	ω_{0}	$\begin{array}{\|c} \text { Step } \\ \text { response } \\ t>0 \end{array}$	Rise time (907)
Butterworth	$\begin{aligned} & \frac{1}{R_{c}} \sqrt{\frac{2 k}{\alpha a g}} \\ & =\frac{1}{R_{c}} \sqrt{\frac{k_{1}, R_{H}+\omega_{1}}{\pi G B}} \end{aligned}$	$\begin{array}{\|l} \frac{T_{+} \sqrt{T^{2}+2 T c_{w}}}{T_{0}=\frac{k_{i}}{R_{i j} \times a}} \end{array}$	ω_{0}	$\sqrt{\frac{\alpha a g}{2 k}}$	$\begin{aligned} & 1-\sqrt{2} e^{-\sigma t} x \\ & \sin \left(\omega_{0} t+45^{\circ}\right) \end{aligned}$	$\frac{1.87}{\omega_{0}}$
Thamson	$\begin{aligned} & \frac{1}{R_{c}} \sqrt{\frac{3 k}{\alpha a g}} \\ & =\frac{1}{R_{c}} \sqrt{\frac{3 k, e_{1}, c_{m}}{2 \pi}} \end{aligned}$		$\sqrt{3} \omega_{0}$	$\frac{1}{2} \sqrt{\frac{\alpha a g}{k}}$	$\begin{gathered} 1-2 e^{-\sigma t} x \\ \sin \left(\omega_{0} t+30^{\circ}\right) \end{gathered}$	$\frac{1.62}{w_{0}}$
Perfect square	$\begin{aligned} & \frac{\frac{2}{R} \sqrt{\frac{k}{\alpha a g}}}{=\frac{1}{R_{c}} \sqrt{\frac{2 k, R_{4}}{\pi G B} c_{1+}} \pi} \end{aligned}$	$T=\frac{2 k_{j}}{R_{i} \times{ }^{\text {a }}}$	$\sqrt{\frac{\alpha a g}{k}}$	0	$1-e^{-\delta t}(1+2 t)$	$\frac{3.88}{\sigma}$

Table 3 Analytical expressions for circuits in figures 2 and 3.

Figure 5a MK-2 step response with feedback resistors mounted above the printed circuit board, (left), and on the board, (right), on the highest gain setting.

Figure 5b MK-2 step response without C_{x}, (left), and with C_{x}, (right), on the highest gain setting.


```
[- CiN = C Coble + Codded + Camplitier }=12+13.7=25.7 pf
[-12+48+13.7=73.7pf
\ [12+103+13.7=128.7 pf
``` compensation, and selected input capacitances.


Figure 8 b Typical compensated step response for circuit in figure 3, (second highest gain setting, \(C_{i n}=74.2 \mathrm{pf}, \mathrm{R}_{\mathrm{f} 4}=10 \mathrm{M}\)).
\(\square\)
\(\square\)

\(\square\)

MEHO TO: Advanced Lamomir Frotes File (Froject oels46)
FFOM: E. F. Eloct:
sumject: report on the Implementation and performance of an Improved Lamomuir Frobe Amplifier

Introduction
The purpose of this study has been to improve the speed and accuracy of the Langmar probe fina premamplifier by use of a technique proposed by Dithmar and Macnee. \({ }^{1}\) Their findings may be summarized as follows:

The N1--2 pre-amplifier was shown to be undercompensated for the effects of input and stray feedback resistor capacitances. When driven with a step of current, the circuit exhibited significant overshoot (as much as \(90 \%\) when operated on the highest gair setting). Analysis showed that the amplifier, as configured, could never be adequately compensated for the range of expected input capacitances. Two new circuits were proposed. Each allowed compensetion of input capacitance. In addition, the amplifier could be configured to produce a Thomson response characteristic \({ }^{2}\), thus allowing a fast risetime with minimal overshoot.

Eoth circuits reduce the amount of signal fed to the range scaling feedtack resistors by use of a voltage divider betwem

An Improved Langmuir Frobe Amplifier page :
the operational amplifier output and ground. Eacause of this voltage reduction, the values of the range resistors must then be decreased in order to maintain the same anount of overall feedback. Thus, the effects of stray capacitances (made worse by large-valued feedback resistors) are greatly reducod.

Dne of the two new circuits allows the highest gain setting to be compensated with non-critical components, a significant improvement.

A penalty, which must be paid in this new approach, is an increase in premanplifier noise. The analysis predicts an: increase of four times over the MK-2 figure. The noise characteristic is discussed in the section: Ferformance Measurements.

A laboratory model of the circuit described by Dittmar and Macnee has been constructed. The components and techniques that were employed are directly applicable to a flight program.

\section*{Inplementetion}

A photograph of the finished laboratory prewantilifier is shown in Figure 1. A stimulus box for providing current steps to the amplifer was also constructed and appears in the left side of the photogreph.

Fiqures 2 and \(\underset{S}{ }\) are schematics of the circuit and lataratory model. A printed circuit board was comstructed. The layout of this board is shoun in fiqure 4. One feature of the layout is the use of guard traces about the ranging resistors. These guards shield the feedtact resistors from voltage gradients
generated by surface currents on the printed circuit board. This technique could enhance the amplifier's gain stability over long periods of time.

A specially-constructed brass box encloses the printed circuit board. This bo\% is electrically insulated from and enclosed by an cuter aluminum box. Fower supply leads are carefully bypassed within the outer box to prevent moise from feeding through to the ariplifier itself. The test signals are fed to the amplifiers imput by triadial cable.

These precautions minimize the amount of externally induced noise and: permit measurement of the amplifier's noise floor.

The amplifier was made to work with little trouble. Compensation capacitors were chosen to produce a minimum voltage overshoot at the output in response to a current step at the input in accordance with the Thomson time response characteristic. The highest gain range was easily compensated by a capacitance of TEG pr. This must certainly be considered a significant improvement over the old Mr-2 circuit where capacitor values of a few picofarads wore required.

\section*{Eer formance Measurements}

A三 stated earlier, a significant increase in the amplifier's speed was desired. An improvement in measurement speed can be qained in the following ways:
1. Increasing the amplifiem's risetime and reducing its overshoot (settling tine).
2. Fieducing the time required to recover from a step change in \(V_{A}\).
E. Feducing the time required to recover from a range change.

The amplifier'z performance was studied in all of these areas.
The amplifier was configured for four gain ranges. Input current is converted to output voltage, therefore the amplifier qain. is specified by its transresistance in ohms. The ap-: proximate gains are shown below:
\(\left[\begin{array}{c|c}\hline \text { Rhange } & \text { Transresi stance } \\ \hline 1 & 1000 \text { Megohms } \\ 2 & 75 \text { Megohms } \\ 3 & 4 \text { Megohms } \\ 4 & 225 \text { filohms } \\ \hline\end{array}\right.\)

Tatele 1

Oscilloscope photographs of the current-step response of the amplifiep appear in Figure \(5 . \quad\) Only the first three ranges are shown; the risetime of the fourth was much faster than the first three and would not be a factor in total measurement time. In fact, it ran be semen that the risetime of Fiange 1 , the highest gain setting, is by fat the slowest of all the ranges.

A modiried measurement algorithm has been proposed and was investicgated in an earlier study \({ }^{3}\). A fey requirement for the success of this algori Lhmis the ablility of the premamplifier to
rapidly recover from a voltage step in \(V_{A}\). These measurements are shown in Figure 6. Again, it can be seen that the highest gain range requires the greatest time to recover. In this case, the settling time is on the order of 0.5 mG . A further factor which influences recovery time is the rate of chenge of \(V_{A}\). The test signal used changes at the rate of o. value for a D/A converter. The settling time for the amplifier appeared to be independent of the direction of the \(V_{A}\) step.

A third, but mo less eritical, requirement is the ability to recover from a range change. These measurements are shown in Figure 7. The longest recovery time observed occurred when the gain was changed from the 1000 M range to 75 M range. This downeange required nearly o. 8 ins. It can be seen that the amplifier saturates and then recovers. Dittmar and Macnee reported that step response times could be improved significantly by using an operational amplifier with a figher gain-bandwidth product. Although recovery from saturation is not necessarily related to gain-bandwidth product, ari HA玉E10 operationial amplifier was substituted into the circuit. This amplifier's GE product is about ten times that of the HAZ7OO. The recovery time improved significantly.

The amplifier's noise floor was measured on all ranges and was found to be largest on the 1000 M range. The noise appeared to be widetand with a root-meam-square amplitude of 5 mv which corresponds to an input current of \(5 \times 10^{-12}\) amperes, a value that is probably small enough to be of no concern.

\section*{Conclusions}

Dittmar and Macnee showed that the MK-2 amplifier possessed significant overshoot and ringing on all ranges. (Table 1 of Fief. 1) The worst case settling time was about 2 ms for a cur-rent-step input. The new version, as just discussed, improves this figure by nearly an order of magnitude.

Unfortumately, measurements were not made on the recovery times of the original \(1 H=-2\) for changes in \(V_{A}\) and gain range. It is reasonable to expect, however, that the recovery from steps in \(V_{A}\) has been improved significantly, most likely by about the same factor. The case of recovery from range changes is not quite as clear-mout. Certainly the Mr-2 amplifier's output must have saturated when ranging occurred. Most likely, recovery from saturation was similar to that seen in Fig. 7 , but the settling time would certainly have been much loncger. Therefore, one may conclude that the response of the circuit has been improved in each of the three areas outlined above.

It has also been demonstrated that a faster operational amplifier can significantly improve the recovery time from a range change. This recovery time seems to determine the minimum period in which a measurement could be made. Selection of a higher-speed device for a Langmuir probe pre-amplifier would be done within the constraints of a particular flight program.

The exact determimation of this measurement period, as well. as a demonstration of the modified measurement algorithm, will be the qoal of the mext phase of this study.

An Improved Langinuir Frotse fmplifier

\section*{Feferences}
1. Dittmar, J. A. and Macnee, A.B., "An Analytic and Experimertal Study of Variable Gain Langmuir Frobe Circuits", internal report dated July \(2 \mathrm{~B}, 17 \mathrm{~S}\).
2. Elinchikoff, H.J. and Zverev, A. I., Fintering, in the Timenand Freguency Domain, John Wiley and Gons, New Yort, 1976, pp. 124-127.
Z. Miller, W. A. "Ann Arbor Advanced Adaptive Frobe Algorithm", a computer progran in FORTFAN IV, May \(1,1985\).

An Improved Langmir Frobe Amplifier
- List of Fiqures
1. Fhotograph of the Improved \(H \mathcal{Z}\) Langmuir Frobe Fre-amplifier
2. Improved Langmuir Frobe Fremamplifier, Schematic Drawinq
3. Improved Langmuir Frobe Fre-amplifier, Laboratory Model Echematic Drawing
4. Frinted Circuit Eoard Fictorial
5. Amplifier Fesponse to a Current Step
6. Amplifier Fiesponse to a Step in \(V_{A}\)
7. Amplifier Fecovery from a Fange Change -- Downrange from 1000 M to 75M

\section*{ORIGINAL PAGE IS OF POOR QUALITY}

Figure 2
P P -7 －
\begin{tabular}{|c|c|c|}
\hline Emgimet & B. BLOCK & DATE \\
\hline \multicolumn{2}{|l|}{DRAFtER 0/IB/OS} & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
PC PICTORIAL \\
88. \({ }^{2} 3\) \\
ADV. LANGMUIR PROBE
\end{tabular}}} & \\
\hline & & \\
\hline & & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
SPACE PHYSICS RESEARCH LABORATORY \\
COLLEGE OF EMGINEERINS \\
UNIVERSITY OF MICHIGAM \\
ANM ARBOR, MCHIGAM
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline \multicolumn{3}{|l|}{B-E 7729} \\
\hline
\end{tabular}
-
\(\Gamma \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1\)

\title{
Vert: (1) \(\mathrm{V}_{\mathrm{Sw}}, 10 \mathrm{~V} / \mathrm{div}\) \\ (2) \(V_{\text {out, }} 5 \mathrm{~V} / \mathrm{div}\)
}

Horiz: 200 us/div
\(t_{\text {recovery }}=800\) uS
a.

HA25 10

Vert: (1) \(V_{s w}, 10 \mathrm{~V} / \mathrm{div}\)
(2) \(\mathrm{V}_{\text {out }}, 5 \mathrm{~V} / \mathrm{div}\)

Horlz: 100 us/div
\[
t_{\text {recovery }}=400 \text { us }
\]
b.

Figure 7 Recovery from a Range Change -- Downrange from \(Z_{t}=1000 M\) to 75 M

June 4, 1987

MEMO TO: Advanced Langmuir Probe File (Project 021546)
FROM: B. P. Block
SUBJECT: Report on the Implementation of a Dedicated Processor for the Advanced Langmuir Probe

\section*{Introduction}

The auto-framing algorithm used in the pioneer Venus and DE-2 instruments was implemented with hardwired, discrete logic. The purpose of this study has been to design and fabricate a replacement for this hardwired logic using a programmable controller and to demonstrate a new auto-framing algorithm programmed in the controller's software.

Over the past few years, the dramatic advances in microcomputing and low-power integrated circuit technology have made practical the incorporation of programmable devices in spaceflight instruments. Control functions formerly encoded in discrete hardware can now be represented as instructions to a programmable controller (usually a microprocessor); through associated hardware, the controller can cause the sensor to make a measurement and then report the results. principal among the advantages of this approach is the ability to employ measurement algorithms of much greater complexity than those that were feasible with discrete logic.

A new measurement technique, the five-point algorithm (described in a previous report), takes advantage of the computational capabilities of the controller to measure discrete values of the volt-ampere (V-A) function. This alogorithm rapidly frames the \(V-A\) curve thereby allowing high temporal resolution as well as immediate recovery from fault conditions. It is hoped that an attendant reduction in data rate will also follow.

The instrument measurement and control algorithms are described by software contained in the controller's program memory and are given life by the central processor unit as the program executes. Unlike general computing software, the instrument software must exhibit a time-responsiveness: the
sensor must make measurements at precise intervals, the results must be telemetered periodically, and commands must be received asynchronously. Hardware and software exhibiting this time-responsiveness constitute a real-time system.

\section*{Real-time Systems}

A real-time system is a collection of devices controlled and monitored by a stored program of instructions. Stimuli from these devices, in the form of interrupts, initiate and influence program processing; the software is said to be interrupt-driven. Although the device stimuli arrive at unpredictable intervals, the software responses must nevertheless be delivered within rigid time constraints. For example, commands arriving from the spacecraft must be given immediate attention, even though the instrument software is busy controlling a measurement cycle. In reaction to these commands, the software must respond correctly and completely by altering the instrument state to accomplish the desired operation. It must also do so reliably, perhaps even in the event of hardware failure.

These requirements have presented a special challange in the design of the programmable controller. The hardware and software solutions to the problems of responsiveness, correctness and reliability will now be discussed.

\section*{Hardware}

Many programmable devices exist in the marketplace today. A few of the requirements for a programmable Langmuir probe controller are:
1. Low power consumption
2. Demonstrated reliability, qualifiable to the relevant program standards
3. An architecture suitable for use with high-level languages, such as FORTRAN or \(C\)
4. The availability of hardware/software development tools.

A survey of existing devices was undertaken. Only one device, the Harris \(80 c 86\) microprocessor, met all of the above requirements. This device is a general-purpose 16-bit CMOS microprocessor fabricated using a self-aligned silicon gate CMOS process. The 80 C 86 is capable of addressing a maximum of

1 megabyte of program memory and 64 kilobytes of input/output (I/O). The 80C86 requires a system clock rate of 5 MHz and typically consumes 250 milliwatts of power. The device has been qualified by NASA for a number of flight programs, including the UARS/High Resolution Doppler Imager. Many development tools exist at SPRL: a cross-assembler, several high-level language cross-compilers, and an in-circuit emulator. These tools are discussed in the Software section of this report.

The concept of the controller, hereafter called the Dedicated Processor (DP), is shown in Figure 1. The 80 C 86 CPU and associated clock generator are shown on the left-hand side of the drawing. Program memory consists of 32 kilobytes of erasable programmable read-only memory (EPROM) and 20 kbytes of static random access memory (SRAM). The system is capable of responding to a maximum of 8 external interrupts by use of a programmable interrupt controller (PIC). To provide system event timing, a three-channel programmable interval timer (PIT) was incorporated. This device interrupts the processorat a 100 Hz rate, initiating measurement cycles, scheduling system tasks, etc. Communication with the DP, in lieu of a specific command and telemetry interface, is accomplished by a standard RS232 computer connection. This is a convenient, low-cost method of acquiring data and sending commands. The inclusion of the more usual PCM telemetry and command interface for use in a flight instument would be straightforward. Because the full one megabyte memory space is not used, a means of detecting accesses to unused addresses was added. Such an access produces a warning message through the RS232 serial port.

The hardware controlled by the DP is called the signal processor and is shown in figure 2. This hardware, developed during an earlier study (NAS5-26678), produces the voltage applied to the probe and measures the resulting probe current. communication between the DP and signal processor occurs through a 16-bit bi-directional digital interface. The signal processor appears to the DP as a series of registers through which data can be passed. Additionally, the signal processor interrupts the \(D P\) at the end of every probe current conversion.

The exact way in which memory and \(1 / O\) are arranged is shown in figure 3.

Thus, the DP, signal processor, and instrument power supply (not shown) constitute the Langmuir probe electronics. Appendix A contains a complete schematic set and wire listing for the DP.

The dedicated processor requires a 5 volt power supply and consumes approximately 0.9 watts of power.

The careful selection of components throughout the DP makes the transport of this design to a flight-qualifiable version relatively straightforward. Certain features that may enhance the reliabilty of a flight system were not incorporated. Any flight unit would likely include a watchdog timer and redundant memory. However, these features could be readily added to the current design.

\section*{Software}

Like the hardware that it replaces, the DP software is substantially complex. Many software instructions replace individual logic gates. Given the control and measurement algorithms to be implemented, the potential complexity of the software is great. A way to reduce this complexity and its cost is to impose a strong modular structure on the software design. If the software is not constructed in a highly structured manner, testing becomes difficult, if not impossible. The stringent reliablity requirements imposed on a flight version of the Advanced Langmuir Probe system would require that each software module be thoroughly tested before it is incorporated into the \(D P\).

In order to enforce the necessary structure at the system level, a well-tested, commercial software package called the Ready Systems Virtual Real-time Executive (VRTX) is used. VRTX has been approved by NASA-GSFC for use on the UARS program and is presently being evaluated by JPL for use on the Mariner Mark II spacecraft.

The features contained in VRTX include the following:
1. Multitasking support - a number of tasks can be handled concurrently.
2. Interrupt-driven, priority-based scheduling tasks are assigned a priority level according to their time-criticality.
3. Intertask communication and synchronization tasks can send messages through mailboxes and queues; semaphores can be employed for synchronizing two or more tasks.
4. Dynamic memory allocation - a task can request the use of a certain amount of memory and, when finished, relinquish it.
5. Real-time clock control - timing is referenced to a hardware clock.
6. Character I/O support - a standard means of communicating with one or more terminals is provided.
7. Real-time responsiveness - the system responds to outside events rapidly enough to control the ongoing process.

By dividing the software into a number of independent, well-defined tasks, each of which can be specified, written and tested individually, the desired modularity can be obtained. VRTX manages each of these tasks concurrently, providing standard services, such as those listed above.

Under VRTX, the measurement algorithm, written as one or more tasks, is scheduled, executed and then suspended untilthe next measurement cycle. In the meantime, other tasks such as the telemetry task are scheduled and executed. Communication occurs regularly between tasks and the system terminal.

Because the principal cost of a microprocessor-based system lies in its software, not in the hardware, the easy portability of the software from one type of microprocessor to another is a highly desirable goal. This is especially true for the Advanced Langmuir Probe, where no particular flight program has been identified and the program-specific part requirements have not been established. VRTX, available for many different microprocessors, will allow those routines coded in a high- level language to be transported directly. Only the board-support routines, written in native code, would need to be altered.

The system structure of the Advanced Langmuir probe is shown schematically in Figure 4.

The SPRL-written software consists of board-level support The application code implements the measurement algorithm, the terminal communications and all \(I / 0\) to the signal processor. This software will be written in the \(C\) programming language.

At present, VRTX has been installed on the DP and a number of simple tasks have been written to verify that it functions properly.

Certain development tools are necessary for the writing and debugging of \(D P\) software. The Space Physics Research Laboratory has an extensive collection of cross-development software for the 80C86 microprocessor. The schema for DP software development is shown in Figure 5.

The DP, having only a small amount of memory and no secondary storage devices, is not a viable machine for developing software. Consequently, a much larger computer, a DEC VAX 8600 mainframe, is used for generating the object code to be executed by the DP. A number of cross-assemblers and cross-compilers reside on the VAX 8600. The product of these is an executable image that is downloaded to a mini-computer. This minicomputer, a Charles River Data System LSI-11/23, stores the image locally and then transmits the code to the DP. Data acquired from the DP/signal processor can be stored on the disk of the LSI-11/23 and processed for presentation in graphical or tabular form. In addition to VRTX and the application code, a small resident monitor, MON86, and a software package called TRACER reside on the DP. TRACER is designed to interactively monitor the execution of VRTX by displaying task status on the user console. Additionally, it communicates with the LSI-11/23 to accomplish the downloading of the object image.

A listing of the board-support software for VRTX and TRACER as well as the source code for MON86 is contained in Appendix \(B\).

\section*{Present Status}

The installation and testing of VRTX has been completed. Some simple programs (tasks) have been developed to verify that both VRTX and the DP hardware operate reliably. The ability to transfer object files between the VAX 8600 and the CRDS LSI-11/23 has been demonstrated.

Work is currently centered on the specification of the ALP application software and the design and coding of this software in the \(C\) programming language. Development of software for the graphical display of the acquired data is being developed in parallel. The ability to display, in graphical form, the V-A funtion on a high-resolution CRT, as well as on hardcopy, will allow easy evaluation of the five-point algorithm and the fidelity of the plasma simulators.
A low-power, reliable, microprocessor-based controller has been designed, built and tested. A real-time executive has been installed and tested on this controller. This combination of hardware and software has yielded a versatile, general-purpose, programmable replacement for the hardwired logic of the Langumuir probe electronics. Its utility is not limited to this particular instrument; with little or no modification, only the installation of the appropriate application software, it could be used to control a wide variety of scientific instruments.
Work continues on the application software necessary to implement the five-point algorithm and the graphics display. With this modest continued effort, a demonstration of a functioning Advanced Langmuir probe will be possible in the near future.

\section*{List of Figures}
1. Concept Drawing, Dedicated Processor
2. Concept Drawing, Signal Processor
3. Memory and I/O Map, Dedicated Processor
4. System Structure, Advanced Langmuir Probe
5. Software Development Scheme, Dedicated Processor

figure 1

FIGURE 2

FIGURE 3

\section*{- SOFTWARE}

\section*{- HARDWARE}

\section*{Appendix A}

Schematic Set and wirelists
for the
Dedicated Processor

MEMORY CHIP SELECT DECODE

MEMORY ADDRESS DECODE

ILLEGAL MEMORY ADDRESS DETECTION INTA MEMORY DISABLE FOR END OF BUS CYCLE AND INTERRUPT CYCLE TLOTMEMAD

DE-LANG DATA / CONTROL PIP CONNECTORS

 ［2O］＜\(\langle\boldsymbol{O}\rangle\) ouras［ig］ OUTD7［2］

 2
0
0
0
0
0

ingon [35] OUT P4［993
 （3）
名
 ［22］LANGO4 LIANGDS［idA家回 ［19］A2 Dipcom

Note：
CONMECTOA PIN nUmbers are inoicated in arackets NEXT TO SIGNAL MAMES．
\[
0
\]

 ［18］\(\langle\theta\rangle\langle\theta\rangle\) OUT［0］［37］
ORAFTERS REK／EGJ
I／O CONNECTOR PORTS
PROCESSOR INTERFACE
ADVANCED LANGMUIR PR
B－E7B98
\[
\begin{array}{ll}
2 & 2 \\
3 & N \\
2 & 2
\end{array}
\]
ENOCONV B9] ourse 配
\[
\begin{aligned}
& 2 \\
& N \\
& 2 \\
& 2
\end{aligned}
\]

1

1
\[
\begin{aligned}
& 1 \\
& \text { •WIREK } \\
& \text { LINE H }
\end{aligned}
\]
\[
1
\]
\[
\begin{gathered}
1 \\
\text { GENERAL PUR } \\
\text { \& LOCATIO }
\end{gathered}
\]

SSET CONTCHAR=\% BAYS=4 ELEMAX=500 NETMAX=1000 ECOMAX=500 WIRES=OFF PUNCH=OFF ECOS=ON
SET HI=PWR LO=GND \$SET HIEPWR LO=GND
\$DATA
*SET ECHO=OFF SET ECHO=OFF

 0
\(-\underset{\square}{\square}\)
-
-

\[
\begin{gathered}
1 \\
\text { LINE }
\end{gathered}
\]
\[
\begin{gathered}
1 \\
\text { ELEM } \Rightarrow
\end{gathered}
\]
 Hco
\begin{tabular}{|c|c|}
\hline \(\cdots 0\) & NmOMNMmmmont \\
\hline 44 & \\
\hline 4 4 & \\
\hline \(\infty\) & \\
\hline \(\infty\) & \\
\hline & \\
\hline
\end{tabular}

- PRECEDAG PAGE CLA: NOT FTBMT

\section*{PRECEDING PARE DLARX NOT FMATM}

\section*{PRECEDING PAGE BLANK NOT FILMED}

\title{
PRECEDING PAGE BLRAK NOT FLLMED
}

\section*{Preceding page blanx not filmed}
```

- 
-     - O
- F

RTS
RTS－
SDI

## PRECEDTAG PAQE ELANX NOT FRMED

効

8888888888888888888888888888888818品品品品品品品品品品品品品品品品品品品品品品品品品品




## 

## PRECEDING PAGE BLANK NOT FL MED

20-december- 1979
0
Wa

plugging list

$$
\text { plug pin } 1 \text { of: into: }
$$ -december- 1979

1
-

$$
\begin{array}{lllll}
1 & 1 & 1 & 1
\end{array}
$$

운군

$$
-
$$

$$
\begin{aligned}
& -0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$



## Appendix B <br> Software Source Listings

1. MON86
2. VRTX and TRACER Board Support Packages


[^0] .. .










$\approx$
6
$\circ$
$\circ$
$\circ$
$\circ$
0
0
0

$\underset{\infty}{\infty} \vec{\alpha} \quad$| $a$ |
| :---: |







$$
\begin{aligned}
& \text { CL, 1 } \\
& \text { TOPARS } \\
& \text { AX, PARI } \\
& \text { PARZ, AX } \\
& \text { AX, ADDREG } \\
& \text { PAR1, AX } \\
& \text { AX, PAR } 2 \\
& \text { BP, PAR1 } \\
& \text { BX, REGS +18 } \\
& \text { DS } \\
& \text { DS, BX } \\
& \text { DS: IBPI, AL } \\
& \text { DS } \\
& \text { DX, } 1 \\
& \text { DSPLAY }
\end{aligned}
$$




O3D6	80	$F 9$	01	
$03 D 9$	75	$0 C$		
$03 D B$	$A 1$	$006 D$	$R$	
$03 D E$	$A 3$	$006 F$	$R$	
$03 E 1$	$A 1$	0071	$R$	
$03 E 4$	$A 3$	$006 D$	$R$	
$03 E 7$	$A 1$	$006 F$	$R$	
$03 E A$	$8 B$	$2 E$	$006 D$	$R$
$03 E E$	$8 B$	$1 E$	0062	$R$
$03 F 2$	$1 E$			
$03 F 3$	$8 E$	$D B$		
$03 F 5$	$3 E$	88	46	00
$03 F 9$	$1 F$			
$03 F A$	BA	0001		
$03 F D$	$E 9$	$020 F$	$R$	


...........


0494	52
0495	53
0496	8 B
049 A	86
049 C	46
049 D	46
049 E	9 A
04 A 3	80
04 A	75


O4AB	80	日C	0000	R	20
$04 A D$	74	44			




[^1]


		8
		$\pm$
	~ $\sim$ ¢	$\pm$ T
		18
		勿:



ORIGINAL PAGE IS OF POOR QUALITY








GRIGINAL PAGE IS




[^2]

－		吕吕	咅合吕	믐응응응	330	9330	号
－	$\underset{\sim}{\infty}$						吕







```
g. I'
111
87
206l 17.l (-MN',
7
#
OUT
PIT_INIT
GaNa
O
ON
008
```









:

0009		3E 0000	R 00
OODE	75	00	
OOEO	B8	0014	
OOE3	CD	20	
00 E 5	9 A	0106 -	- R
OOEA	EB	1590	
OOED	C6	060000	R 02
0072	B8	0014	
00F5	$C D$	20	
$00 \% 7$	3 D	0000	
OOFA	75	05	
OOFC	9 A	0106	R
0101	B8	0011	
0104	CD	20	
0106			
0106			
0106	8 A	C5	
0108	E 7	30	
010 A	CB		
010 B			


$\square$
$\square$
9




$\stackrel{\omega}{m}_{\stackrel{\omega}{\circ}}^{\substack{\circ \\ \sim}}$	¢ \％	$\begin{aligned} & \text { a } \\ & \text { B } \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{8} 0 \\ & 00 \end{aligned}$	－
	（ ${ }_{\sim}^{\text {® }}$	甼㫛	¢	吅
	$\begin{aligned} & 0 \\ & \underset{\sim}{N} \\ & \text { N} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { au } \\ & \text { O. } \\ & \text { BO } \end{aligned}$	运


0030	
0030	日B 0000 R
0033	Ba－－－－R
0036	8E CO
0038	28 c9
0034	2 B D2




[^3]symbols:


$\begin{array}{ll}\text { INVOKED } & \text { EY: } \\ & \text { YSLINK SUPPORT_V2 }\end{array}$
processing input file SuPPORT_V2
processing input file support_v2
 A
TAB
SUPPORT_V2
BSP_CODE

TABL
DATA
CODE

MAIN
STACK SEG
VECTEBL
MAIE
VECTOR
CFTGL
TXRDY
TCONFIG
TBL

END OF MAP

they have no sensible effect on the measurement. This report describes the design of this siystem and discusses some of the results obtained.

## The Effect of Induced Noise in the $\mathrm{V}_{\mathrm{A}}$-Probe-Plasma Loop

A simplified view of the electrometer and voltage generator in their traditional configuration is shown in Figure 1. The floating electrometer requires supply voltages that are separate from those of the $V_{A}$ generator and control logic; these floating potentials are generally derived from separate secondaries on the main DC-DC power converter. These supplies are not shown for the sake of simplicity, but the noise currents that they induce through primary-secondary capacitive coupling are shown as current source IPSN.


Figure 1. Electrometer and $\mathrm{V}_{\mathrm{A}}$ Generator Concept
Even though considerable care is exercised in reducing stray capacitive coupling from the primary winding to the floating windings through use of

Faraday shielding and other techniques, noise currents at the converter frequency (generally in the range of several tens of kiloHertz) and its harmonics are inevitably coupled, directly or indirectly, into the floating electrometer circuitry. These currents are illustrated as $\mathrm{I}_{\mathrm{n} 1}$ and $\mathrm{I}_{\mathrm{n} 2}$. If the output impedance of the $V_{A}$ generator could be made zero, or at least very small with respect to the plasma impedance, the switching noise currents $\mathrm{I}_{\mathrm{n} 1}$ would be shunted through the generator without perturbing the applied potential. However, practical fed-back voltage generators, which are capable of developing precise applied potentials, will always have finite output impedances as indicated by $\mathrm{Z}_{0}(f)$ in Figure 1. Noise currents (at the frequency of the switching power supply) in the microampere range are quite capable of inducing voltages in the range of many millivolts, causing substantial errors in the observed plasma current. A second current path exists through the distributed capacitance between the electrometer shield, which can be extensive, and the secondary ground. The impedance of this path, purely capacitive, is generally large with respect to that of the $V_{A}$ generator in the new configuration, and the effects of this current can be neglected in the following discussion.

The effect of $\mathrm{I}_{\mathrm{n} 1}$ as shown is to introduce a momentary voltage offset, indistinguishable from a step change in $\mathrm{V}_{\mathrm{A}}$, into the $\mathrm{V}_{\mathrm{A}}$-probe-plasma loop. In earlier versions of the Langmuir probe instrument, the response time of the electrometer amplifier to an impulse of applied voltage was considerably slower than the duration of the current transient produced by the above-discussed mechanism. Consequently, no adverse effect on the operation of the electrometer was observed. But the response time of the high-speed electrometer implemented under this Grant (and discussed in a previous report) ${ }^{1}$ is significantly faster than earlier versions and is well within the range of transient pulse widths. These effects are most egregious in the electron retardation region, precisely that part of the voltampere curve where accurate temperature measurements must be made. That the effect is most prominent in this region is obvious from the fact that the conductance of the plasma ( $\partial \mathrm{I}_{\text {plasma }} / \partial \mathrm{V}_{\mathrm{A}}$ ) is largest in this area.

[^4]Indeed, a recovery period of about 800 microseconds is required after each transient, which can be seen from measured data. ${ }^{2}$ This recovery time

[^5]dramatic. A careful examination of the electrometer preamplifier output (at maximum sensitivity), operated in the electron retardation region of a dummy plasma and observed on a differential oscilloscope to remove $\mathrm{V}_{\mathrm{A}}$, revealed no trace of the floating converter fundamental or its harmonics. It was decided to measure the output of the preamplifier to a precision greater than that afforded by the internal AD converter, which possesses a resolution of $+/-1$ part in 4096. For this purpose, a Hewlett-Packard 3458A digital multimeter with a resolution of 6.5 decimal digits was chosen. A variety of high value resistors in the several hundred megohm range were chosen to provide large plasma impedances. These resistors were placed in a specially designed, shielded box to prevent extraneous noise pickup. The

[^6]sweep. Likewise, the remaining ranges at lower sensitivities yield no noticeable scatter.

## Conclusion

Thus it is demonstrated that the effect of switching noise in the floating power converter can be reduced to a level in which it plays no part in the measurement. In fact, we have returned to the case of the earlier Langmuir probe instruments, in which the electrometer response time was slower than the perturbing impulse. A note of caution should be sounded, because in all cases the plasma itself is subjected to an impure applied voltage, even if the instrument itself is unable to respond to the effects of such a perturbation. The plasma, possessing a non-linear volt-ampere characteristic, is of course not immune to such high frequency waveforms, and as such introduces some uncertainty, however small, into the measurement.

Memo to ALP Project File (\#021546), September 18, 1990
page 7

## Additional Figures


Figure 3. Concept Drawing, Electrometer and VA Generator

Appendix

## VA Generator Transfer Function



Figure A1. VA Transfer Function, Full Range

## VA Generator Transfer Function



Figure A2. $\mathrm{V}_{\mathrm{A}}$ Transfer Function, Reduced Range

Preamp Range $0(\therefore=100 \sim M \Omega)$


Figure A3. Preamp Range 0, Full Range ( $\mathrm{R}=1000 \mathrm{M}$ )

## Preamp Range $0 \quad(i=10 c \mathrm{M}-2)$

- Y


Figure A4. Preamp Range 0, Reduced Range ( $\mathrm{R}=1000 \mathrm{M}$ )

## Preamp Range 4 ルッル）



Figure A5．Preamp Range 4，Full Range（ $\mathrm{R}=70 \mathrm{M}$ ）

## Preamp Range 4 , $\because$ に)

$-\mathrm{Y}$


Figure A6. Preamp Range 4, Reduced Range ( $R=70 \mathrm{M}$ )


Figure A7. Preamp Range 6, Full Range ( $\mathrm{R}=4.132 \mathrm{M}$ )

-	
$=$	
-	
-	
-	

$-\quad \mathrm{Y} \times 10^{-3}$


Figure A8. Preamp Range 6, Reduced Range ( $\mathrm{R}=4.132 \mathrm{M}$ )

## Preamp Range $7 \ldots 4564 k, 2)$



Figure A9. Preamp Range 7, Full Range ( $\mathrm{R}=450.4 \mathrm{~K}$ )


[^0]:    : Uart Status Register Address
    ; Modem Status Register Address

[^1]:    

[^2]:    

[^3]:    1
    2

[^4]:    ${ }^{1}$ B. P. Block, "Report on the Implementation and Performance of an Improved Langmuir Probe Amplifier", internal memorandum 86-002, Space Physics Research Laboratory, University of Michigan, Ann Arbor, February 13, 1986.

[^5]:    2 Ibid., Figure 6a, p. 14.

[^6]:    ${ }^{3}$ B. P. Block, "Report on the Implementation of a Dedicated Processor for the Advanced Langmuir Probe", internal memorandum 87-008, Space Physics Research Laboratory, University of Michigan, Ann Arbor, June 4, 1987.

