7,676 research outputs found

    Experimental investigation of reactor-loop transients during startup of a simulated SNAP-8 system

    Get PDF
    Primary loop transients during startup of Rankine cycle space power system in SNAP 8 simulato

    Analytic models and forward scattering from accelerator to cosmic-ray energies

    Full text link
    Analytic models for hadron-hadron scattering are characterized by analytical parametrizations for the forward amplitudes and the use of dispersion relation techniques to study the total cross section σtot\sigma_{tot} and the ρ\rho parameter. In this paper we investigate four aspects related to the application of the model to pppp and pˉp\bar{p}p scattering, from accelerator to cosmic-ray energies: 1) the effect of different estimations for σtot\sigma_{tot} from cosmic-ray experiments; 2) the differences between individual and global (simultaneous) fits to σtot\sigma_{tot} and ρ\rho; 3) the role of the subtraction constant in the dispersion relations; 4) the effect of distinct asymptotic inputs from different analytic models. This is done by using as a framework the single Pomeron and the maximal Odderon parametrizations for the total cross section. Our main conclusions are the following: 1) Despite the small influence from different cosmic-ray estimations, the results allow us to extract an upper bound for the soft pomeron intercept: 1+ϵ=1.0941 + \epsilon = 1.094; 2) although global fits present good statistical results, in general, this procedure constrains the rise of σtot\sigma_{tot}; 3) the subtraction constant as a free parameter affects the fit results at both low and high energies; 4) independently of the cosmic-ray information used and the subtraction constant, global fits with the odderon parametrization predict that, above s70\sqrt s \approx 70 GeV, ρpp(s)\rho_{pp}(s) becomes greater than ρpˉp(s)\rho_{\bar{p}p}(s), and this result is in complete agreement with all the data presently available. In particular, we infer ρpp=0.134±0.005\rho_{pp} = 0.134 \pm 0.005 at s=200\sqrt s = 200 GeV and 0.151±0.0070.151 \pm 0.007 at 500 GeV (BNL RHIC energies).Comment: 16 pages, 7 figures, aps-revtex, wording changes, corrected typos, to appear in Physical Review

    Exotic Gapless Mott Insulators of Bosons on Multi-Leg Ladders

    Get PDF
    We present evidence for an exotic gapless insulating phase of hard-core bosons on multi-leg ladders with a density commensurate with the number of legs. In particular, we study in detail a model of bosons moving with direct hopping and frustrating ring exchange on a 3-leg ladder at ν=1/3\nu=1/3 filling. For sufficiently large ring exchange, the system is insulating along the ladder but has two gapless modes and power law transverse density correlations at incommensurate wave vectors. We propose a determinantal wave function for this phase and find excellent comparison between variational Monte Carlo and density matrix renormalization group calculations on the model Hamiltonian, thus providing strong evidence for the existence of this exotic phase. Finally, we discuss extensions of our results to other NN-leg systems and to NN-layer two-dimensional structures.Comment: 5 pages, 4 figures; v3 is the print version; supplemental material attache

    Penning traps as a versatile tool for precise experiments in fundamental physics

    Full text link
    This review article describes the trapping of charged particles. The main principles of electromagnetic confinement of various species from elementary particles to heavy atoms are briefly described. The preparation and manipulation with trapped single particles, as well as methods of frequency measurements, providing unprecedented precision, are discussed. Unique applications of Penning traps in fundamental physics are presented. Ultra-precise trap-measurements of masses and magnetic moments of elementary particles (electrons, positrons, protons and antiprotons) confirm CPT-conservation, and allow accurate determination of the fine-structure constant alpha and other fundamental constants. This together with the information on the unitarity of the quark-mixing matrix, derived from the trap-measurements of atomic masses, serves for assessment of the Standard Model of the physics world. Direct mass measurements of nuclides targeted to some advanced problems of astrophysics and nuclear physics are also presented

    Digital assisted soft tissue sculpturing (DASS) technique for immediate loading pink free complete arch implant prosthesis

    Get PDF
    Purpose: To introduce a digitally assisted technique to achieve the ideal soft and bone tissue interface for anatomic-driven pink free implant supported fixed prosthesis, and prefabricate an interim prosthesis to be used the day of the surgery as a prosthetic scaffold to condition the healing Methods: The digital assisted soft tissue sculpturing (DASS) technique allows the previsualization of the ideal soft and bone tissue interface and fabricate a computer aided design computer aided manufacturing (CAD-CAM) anatomic-driven pink free complete arch interim prosthesis for the immediate loading. Bone and soft tissue interface as well as the interim prosthesis design are performed in a segmented multiple standard tessellation language (STL) file embedding the bone anatomy, the intraoral surface anatomy (dental and soft tissue), the digital wax-up and the implant positioning. The interim prosthesis is used as a prosthetic scaffold to guide the soft and bone tissue surgical sculpturing and regeneration.Conclusions: The DASS technique is a predictable integrated digital workflow that simplifies the achievement of a scalloped tissue interface for pink free fixed implant prosthesis, reestablishing the mucosal dimension required for the protection of underlying bone while maintaining tissue health. The surgical sculpturing and maturation of the soft and bone tissue is driven and enhanced by the xenogeneic collagen matrix grafting and prosthetic scaffold effect of the digitally prefabricated interim prosthesis delivered the day of the surgery

    Using Bars As Signposts of Galaxy Evolution at High and Low Redshifts

    Get PDF
    An analysis of the NICMOS Deep Field shows that there is no evidence of a decline in the bar fraction beyond z~0.7, as previously claimed; both bandshifting and spatial resolution must be taken into account when evaluating the evolution of the bar fraction. Two main caveats of this study were a lack of a proper comparison sample at low redshifts and a larger number of galaxies at high redshifts. We address these caveats using two new studies. For a proper local sample, we have analyzed 134 spirals in the near-infrared using 2MASS (main results presented by Menendez-Delmestre in this volume) which serves as an ideal anchor for the low-redshift Universe. In addition to measuring the mean bar properties, we find that bar size is correlated with galaxy size and brightness, but the bar ellipticity is not correlated with these galaxy properties. The bar length is not correlated with the bar ellipticity. For larger high redshift samples we analyze the bar fraction from the 2-square degree COSMOS ACS survey. We find that the bar fraction at z~0.7 is ~50%, consistent with our earlier finding of no decline in bar fraction at high redshifts.Comment: In the proceedings of "Penetrating Bars through Masks of Cosmic Dust: The Hubble Tuning Fork strikes a New Note

    Bose Metals and Insulators on Multi-Leg Ladders with Ring Exchange

    Get PDF
    We establish compelling evidence for the existence of new quasi-one-dimensional descendants of the d-wave Bose liquid (DBL), an exotic two-dimensional quantum phase of uncondensed itinerant bosons characterized by surfaces of gapless excitations in momentum space [O. I. Motrunich and M. P. A. Fisher, Phys. Rev. B {\bf 75}, 235116 (2007)]. In particular, motivated by a strong-coupling analysis of the gauge theory for the DBL, we study a model of hard-core bosons moving on the NN-leg square ladder with frustrating four-site ring exchange. Here, we focus on four- and three-leg systems where we have identified two novel phases: a compressible gapless Bose metal on the four-leg ladder and an incompressible gapless Mott insulator on the three-leg ladder. The former is conducting along the ladder and has five gapless modes, one more than the number of legs. This represents a significant step forward in establishing the potential stability of the DBL in two dimensions. The latter, on the other hand, is a fundamentally quasi-one-dimensional phase that is insulating along the ladder but has two gapless modes and incommensurate power law transverse density-density correlations. In both cases, we can understand the nature of the phase using slave-particle-inspired variational wave functions consisting of a product of two distinct Slater determinants, the properties of which compare impressively well to a density matrix renormalization group solution of the model Hamiltonian. Stability arguments are made in favor of both quantum phases by accessing the universal low-energy physics with a bosonization analysis of the appropriate quasi-1D gauge theory. We will briefly discuss the potential relevance of these findings to high-temperature superconductors, cold atomic gases, and frustrated quantum magnets.Comment: 33 pages, 16 figures; this is the print version, only very minor changes from v

    A predictive processing theory of sensorimotor contingencies: explaining the puzzle of perceptual presence and its absence in synesthesia

    Get PDF
    Normal perception involves experiencing objects within perceptual scenes as real, as existing in the world. This property of “perceptual presence” has motivated “sensorimotor theories” which understand perception to involve the mastery of sensorimotor contingencies. However, the mechanistic basis of sensorimotor contingencies and their mastery has remained unclear. Sensorimotor theory also struggles to explain instances of perception, such as synesthesia, that appear to lack perceptual presence and for which relevant sensorimotor contingencies are difficult to identify. On alternative “predictive processing” theories, perceptual content emerges from probabilistic inference on the external causes of sensory signals, however, this view has addressed neither the problem of perceptual presence nor synesthesia. Here, I describe a theory of predictive perception of sensorimotor contingencies which (1) accounts for perceptual presence in normal perception, as well as its absence in synesthesia, and (2) operationalizes the notion of sensorimotor contingencies and their mastery. The core idea is that generative models underlying perception incorporate explicitly counterfactual elements related to how sensory inputs would change on the basis of a broad repertoire of possible actions, even if those actions are not performed. These “counterfactually-rich” generative models encode sensorimotor contingencies related to repertoires of sensorimotor dependencies, with counterfactual richness determining the degree of perceptual presence associated with a stimulus. While the generative models underlying normal perception are typically counterfactually rich (reflecting a large repertoire of possible sensorimotor dependencies), those underlying synesthetic concurrents are hypothesized to be counterfactually poor. In addition to accounting for the phenomenology of synesthesia, the theory naturally accommodates phenomenological differences between a range of experiential states including dreaming, hallucination, and the like. It may also lead to a new view of the (in)determinacy of normal perception
    corecore