9,308 research outputs found
Experimental pressure drop investigation of wetting and nonwetting mercury condensing in uniformly tapered tubes
Pressure drop of wetting and nonwetting mercury condensing in tapered tubes - turbogenerator system
The High Energy Behavior of the Forward Scattering Parameters---An Amplitude Analysis Update
Utilizing the most recent experimental data, we reanalyze high energy \pbar p
and pp data, using the asymptotic amplitude analysis, under the assumption that
we have reached `asymptopia'. This analysis gives strong evidence for a dependence at {\em current} energies and {\em not} ,
and also demonstrates that odderons are {\em not} necessary to explain the
experimental data.Comment: 7 pages in LaTeX, 4 figures and 5 files, uuencoded in file
"sigall.uu
Consequences of the Factorization Hypothesis in pbar p, pp, gamma p and gamma gamma Collisions
Using an eikonal analysis, we examine the validity of the factorization
theorem for nucleon-nucleon, gamma p and gamma gamma collisions. As an example,
using the additive quark model and meson vector dominance, we directly show
that for all energies and values of the eikonal, that the factorization theorem
sigma_{nn}/sigma_{gamma p} = sigma_{gamma p}/sigma_{gamma gamma} holds. We can
also compute the survival probability of large rapidity gaps in high energy
pbar p and pp collisions. We show that the survival probabilities are identical
(at the same energy) for gamma p and gamma gamma collisions, as well as for
nucleon-nucleon collisions. We further show that neither the factorization
theorem nor the reaction-independence of the survival probabilities depends on
the assumption of an additive quark model, but, more generally, depends on the
opacity of the eikonal being independent of whether the reaction is n-n, gamma
p or gamma gamma.Comment: 8 pages, Revtex, no figures. Expanded discussion, minor correction
Experimental investigation of reactor-loop transients during startup of a simulated SNAP-8 system
Primary loop transients during startup of Rankine cycle space power system in SNAP 8 simulato
A Dust-Penetrated Classification Scheme for Bars as Inferred from their Gravitational Force Fields
The division of galaxies into ``barred'' (SB) and ``normal'' (S) spirals is a
fundamental aspect of the Hubble galaxy classification system. This ``tuning
fork'' view was revised by de Vaucouleurs, whose classification volume
recognized apparent ``bar strength'' (SA, SAB, SB) as a continuous property of
galaxies called the ``family''. However, the SA, SAB, and SB families are
purely visual judgments that can have little bearing on the actual bar strength
in a given galaxy. Until very recently, published bar judgments were based
exclusively on blue light images, where internal extinction or star formation
can either mask a bar completely or give the false impression of a bar in a
nonbarred galaxy. Near-infrared camera arrays, which principally trace the old
stellar populations in both normal and barred galaxies, now facilitate a
quantification of bar strength in terms of their gravitational potentials and
force fields. In this paper, we show that the maximum value, Qb, of the ratio
of the tangential force to the mean radial force is a quantitative measure of
the strength of a bar. Qb does not measure bar ellipticity or bar shape, but
rather depends on the actual forcing due to the bar embedded in its disk. We
show that a wide range of true bar strengths characterizes the category ``SB'',
while de Vaucouleurs category ``SAB'' corresponds to a much narrower range of
bar strengths. We present Qb values for 36 galaxies, and we incorporate our bar
classes into a dust-penetrated classification system for spiral galaxies.Comment: Accepted for publication in the Astrophysical Journal (LaTex, 30
pages + 3 figures); Figs. 1 and 3 are in color and are also available at
http://bama.ua.edu/~rbuta/bars
Controlling surface morphologies by time-delayed feedback
We propose a new method to control the roughness of a growing surface, via a
time-delayed feedback scheme. As an illustration, we apply this method to the
Kardar-Parisi-Zhang equation in 1+1 dimensions and show that the effective
growth exponent of the surface width can be stabilized at any desired value in
the interval [0.25,0.33], for a significant length of time. The method is quite
general and can be applied to a wide range of growth phenomena. A possible
experimental realization is suggested.Comment: 4 pages, 3 figure
Draft genome sequence of a meningitic isolate of Cronobacter sakazakii clonal complex 4, strain 8399
The Cronobacter sakazakii clonal lineage defined as clonal complex 4 (CC4), composed of nine sequence types, is associated with severe cases of neonatal meningitis. To date, only closely related C. sakazakii sequence type 4 (ST4) strains have been sequenced. C. sakazakii strain 8399, isolated from a case of neonatal meningitis, was sequenced as the first non-ST4 C. sakazakii strain
A new approach to calculate the gluon polarization
We derive the Leading-Order master equation to extract the polarized gluon
distribution G(x;Q^2) = x \deltag(x;Q^2) from polarized proton structure
function, g1p(x;Q^2). By using a Laplace-transform technique, we solve the
master equation and derive the polarized gluon distribution inside the proton.
The test of accuracy which are based on our calculations with two different
methods confirms that we achieve to the correct solution for the polarized
gluon distribution. We show that accurate experimental knowledge of g1p(x;Q^2)
in a region of Bjorken x and Q^2, is all that is needed to determine the
polarized gluon distribution in that region. Therefore, to determine the gluon
polarization \deltag /g,we only need to have accurate experimental data on
un-polarized and polarized structure functions (F2p (x;Q^2) and g1p(x;Q^2)).Comment: 12 pages, 5 figure
- …