52 research outputs found

    Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria

    Get PDF
    In many soils plants have to grow in a shortage of phosphate, leading to development of phosphate-saving mechanisms. At the cellular level, these mechanisms include conversion of phospholipids into glycolipids, mainly digalactosyldiacylglycerol (DGDG). The lipid changes are not restricted to plastid membranes where DGDG is synthesized and resides under normal conditions. In plant cells deprived of phosphate, mitochondria contain a high concentration of DGDG, whereas mitochondria have no glycolipids in control cells. Mitochondria do not synthesize this pool of DGDG, which structure is shown to be characteristic of a DGD type enzyme present in plastid envelope. The transfer of DGDG between plastid and mitochondria is investigated and detected between mitochondria-closely associated envelope vesicles and mitochondria. This transfer does not apparently involve the endomembrane system and would rather be dependent upon contacts between plastids and mitochondria. Contacts sites are favored at early stages of phosphate deprivation when DGDG cell content is just starting to respond to phosphate deprivation

    Importance of phosphatidylcholine on the chloroplast surface.

    No full text
    International audienceIn plant cells, phosphatidylcholine (PC) is a major glycerolipid of most membranes but practically lacking from the plastid internal membranes. In chloroplasts, PC is absent from the thylakoids and the inner envelope membrane. It is however the main component of the outer envelope membrane, where it exclusively distributes in the outer monolayer. This unique distribution is likely related with operational compartmentalization of plant lipid metabolism. In this review, we summarize the different mechanisms involved in homeostasis of PC in plant cells. The specific origin of chloroplast PC is examined and the involvement of the P4-ATPase family of phospholipid flippases (ALA) is considered with a special attention to the recently reported effect of the endoplasmic reticulum-localized ALA10 on modification of chloroplast PC desaturation. The different possible roles of chloroplast PC are then discussed and analyzed in consideration of plant physiology

    Plant plasma membrane and phosphate deprivation

    No full text
    Phosphorus is a major plant macronutrient, but it is also one of the less accessible mineral elements for these organisms due to the very low solubility of phosphate and phosphorus incorporation in organic matter in soils. Plants have developed multiple strategies to enhance phosphorus acquisition, and much of that activity takes place at the plasma membrane. Phosphorus remobilization from membrane lipids, regulation of transporter activity, and rhizosphere acidification are the primary mechanisms associated with the plasma membrane that function under phosphorus deficiency conditions. In this review, we summarize both lipid remodeling and adjustments of transporters in the plasma membrane of plant cells following Pi deprivation, and discuss the control and coordination of these major modifications in the global response of plants to this stress

    Do plastid envelope membranes play a role in the expression of the plastid genome?

    No full text
    International audienceA unique biochemical machinery is present within the two envelope membranes surrounding plastids (Joyard et al., Plant Physiol. 118 (1998) 715-723) that reflects the stage of development of the plastid and the specific metabolic requirements of the various tissues. Envelope membranes are the site for the synthesis and metabolism of specific lipids. They are also the site of transport of metabolites, proteins and information between plastids and surrounding cellular compartments. For instance, a complex machinery for the import of nuclear-encoded plastid proteins is rapidly being elucidated. The functional studies of plastid envelope membranes result in the characterization of an increasing number of envelope proteins with unexpected functions. For instance, recent experiments have demonstrated that envelope membranes bind specifically to plastid genetic systems, the nucleoids surrounded by plastid ribosomes. At early stages of plastid differentiation, the inner envelope membrane contains a unique protein (named PEND protein) that binds specifically to plastid DNA. This tight connection suggests that the PEND protein is at least involved in partitioning the plastid DNA to daughter plastids during division. The PEND protein can also provide a physical support for replication and transcription. In addition, factors involved in the control of plastid protein synthesis can become associated to envelope membranes. This was shown for a protein homologous to the E. coli ribosome recycling factor and for the stabilizing factors of some specific chloroplast mRNAs encoding thylakoid membrane proteins. In fact, the envelope membranes together with the plastid DNA are the two essential constituents of plastids that confer identity to plastids and their interactions are becoming uncovered through molecular as well as cytological studies. In this review, we will focus on these recent observations (which are consistent with the endosymbiotic origin of plastids) and we discuss possible roles for the plastid envelope in the expression of plastid genome

    Role of phosphatidic acid in plant galactolipid synthesis

    Get PDF
    Phosphatidic acid (PA) is a precursor metabolite for phosphoglycerolipids and also for galactoglycerolipids, which are essential lipids for formation of plant membranes. PA has in addition a main regulatory role in a number of developmental processes notably in the response of the plant to environmental stresses. We review here the different pools of PA dispatched at different locations in the plant cell and how these pools are modified in different growth conditions, particularly during plastid membrane biogenesis and when the plant is exposed to phosphate deprivation. We analyze how these modifications can affect galactolipid synthesis by tuning the activity of MGD1 enzyme allowing a coupling of phospho- and galactolipid metabolisms. Some mechanisms are considered to explain how physicochemical properties of PA allow this lipid to act as a central internal sensor in plant physiology

    The phosphatidic acid phosphatase of the chloroplast envelope is located on the inner envelope membrane

    Get PDF
    AbstractThe envelope from spinach chloroplasts contains an alkaline phosphatidic acid phosphatase which was found to be located on the inner envelope membrane. The diacylglycerol formed by this enzyme from endogenous phosphatidic acid is then used as a substrate for galactolipid synthesis on the inner envelope membrane
    • …
    corecore