381 research outputs found

    Diel vertical migration of the bigeye thresher shark (Alopias superciliosus), a species possessing orbital retia mirabilia

    Get PDF
    The bigeye thresher shark (Alopias superciliosus, Lowe 1841) is one of three sharks in the family Alopiidae, which occupy pelagic, neritic, and shallow coastal waters throughout the altropics and subtropics (Gruber and Compagno, 1981; Castro, 1983). All thresher sharks possess an elongated upper caudal lobe, and the bigeye thresher shark is distinguished from the other alopiid sharks by its large upward-looking eyes and grooves on the top of the head (Bigelow and Schroeder, 1948). Our present understanding of the bigeye thresher shark is primarily based upon data derived from specimens captured in fisheries, including knowledge of its morphological features (Fitch and Craig, 1964; Stillwell and Casey, 1976; Thorpe, 1997), geographic range as far as it overlaps with fisheries (Springer, 1943; Fitch and Craig, 1964; Stillwell and Casey, 1976; Gruber and Compagno, 1981; Thorpe, 1997), age, growth and maturity (Chen et al., 1997; Liu et al., 1998), and aspects of its reproductive biology (Gilmore, 1983; Moreno and Moron, 1992; Chen et al., 1997)

    Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria

    Get PDF
    In many soils plants have to grow in a shortage of phosphate, leading to development of phosphate-saving mechanisms. At the cellular level, these mechanisms include conversion of phospholipids into glycolipids, mainly digalactosyldiacylglycerol (DGDG). The lipid changes are not restricted to plastid membranes where DGDG is synthesized and resides under normal conditions. In plant cells deprived of phosphate, mitochondria contain a high concentration of DGDG, whereas mitochondria have no glycolipids in control cells. Mitochondria do not synthesize this pool of DGDG, which structure is shown to be characteristic of a DGD type enzyme present in plastid envelope. The transfer of DGDG between plastid and mitochondria is investigated and detected between mitochondria-closely associated envelope vesicles and mitochondria. This transfer does not apparently involve the endomembrane system and would rather be dependent upon contacts between plastids and mitochondria. Contacts sites are favored at early stages of phosphate deprivation when DGDG cell content is just starting to respond to phosphate deprivation

    Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish

    Get PDF
    Marlins, sailfish, spearfishes, and swordfish have extraocular muscles that are modified into thermogenic organs beneath the brain. The modified muscle cells, called heater cells, lack organized myofibrils and are densely packed with sarcoplasmic reticulum (SR), transverse (T) tubules, and mitochondria. Thermogenesis in the modified extraocular muscle fibers is hypothesized to be associated with increased energy turnover due to Ca2+ cycling at the SR. In this study, the proteins associated with sequestering and releasing Ca2+ from the SR (ryanodine receptor, Ca2+ ATPase, calsequestrin) of striated muscle cells were characterized in the heater SR using immunoblot and immunofluorescent techniques. Immunoblot analysis with a monoclonal antibody that recognizes both isoforms of nonmammalian RYRs indicates that the fish heater cells express only the alpha RYR isoform. The calcium dependency of [3H]ryanodine binding to the RYR isoform expressed in heater indicates functional identity with the non-mammalian alpha RYR isoform. Fluorescent labeling demonstrates that the RYR is localized in an anastomosing network throughout the heater cell cytoplasm. Measurements of oxalate supported 45Ca2+ uptake, Ca2+ ATPase activity, and [32P]phosphoenzyme formation demonstrate that the SR contains a high capacity for Ca2+ uptake via an ATP dependent enzyme. Immunoblot analysis of calsequestrin revealed a significant amount of the Ca2+ binding protein in the heater cell SR. The present study provides the first direct evidence that the heater SR system contains the proteins necessary for Ca2+ release, re-uptake and sequestration, thus supporting the hypothesis that thermogenesis in the modified muscle cells is achieved via an ATP-dependent cycling of Ca2+ between the SR and cytosolic compartments

    First insights into the movements and vertical habitat use of blue marlin (Makaira nigricans) in the eastern North Atlantic

    Get PDF
    The blue marlin (Makaira nigricans) is a vulnerable migratory fish inhabiting tropical and subtropical pelagic waters of the Atlantic, Pacific and Indian Oceans. The biology and spatial ecology of the species in the eastern North Atlantic is poorly understood, despite being exploited in the region by recreational and commercial fisheries. Here, we present results of the first study to use pop-up satellite archival tags to track blue marlin off Madeira, Portugal (n = 3) and obtain insights into the movements and habitat use of the species within the eastern North Atlantic.publishedVersio

    Informing Management of Atlantic Bluefin Tuna Using Telemetry Data

    Get PDF
    Sustainable management of exploited marine fish and wildlife populations requires knowledge about their productivity. Survival from natural causes of mortality is a key component of population productivity, but is notoriously difficult to estimate. We evaluate the potential for acoustic telemetry as a long-term monitoring tool to estimate rates of natural mortality. We present a Bayesian multistate mark-recapture model for telemetry data collected over a decade from 188 Atlantic bluefin tuna (Thunnus thynnus) and apply it to estimate the rate of natural mortality using only acoustic tag detections for all animals, or using acoustic tag detections for 96 single-tagged tuna plus acoustic tag detections combined with estimated positions from pop-up satellite archival tags for 92 double-tagged animals. We support the model for bluefin tuna with a simulation study to quantify bias in estimates of population dynamics parameters and investigate the effect of auxiliary information from satellite tagging on mortality rate estimates for different acoustic tag detection probability scenarios.We obtained posterior estimates of the instantaneous annual natural mortality (survival) rate across a decade of tagging for Atlantic bluefin tuna of 0.17 yr(-1) (0.84 yr(-1)) both using only acoustic tagging data, and using a combination of acoustic and satellite tagging data. Use of a prior implying a higher rate of fishing mortality yielded an instantaneous annual natural mortality (survival) estimate of 0.10 yr(-1) (0.90 yr(-1)), with combined acoustic and satellite tag data. Results from the simulation study indicate that the use of satellite tags can improve the precision and accuracy of estimates of detection probabilities, area-specific movement probabilities and mortality rates, where the extent of the improvement depends on true underlying acoustic tag detection probabilities. Our work demonstrates that long-term acoustic tagging data sets have strong potential for monitoring of highly migratory marine fish and wildlife populations, providing information on a number of key parameters, including survival and movement rates. However, improved information on tag reporting rates or fishing mortality is needed to better separate natural and fisheries mortality for Atlantic bluefin tuna

    Atlantic bluefin tuna : a novel multistock spatial model for asessing population biomass

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e27693, doi:10.1371/journal.pone.0027693.Atlantic bluefin tuna (Thunnus thynnus) is considered to be overfished, but the status of its populations has been debated, partly because of uncertainties regarding the effects of mixing on fishing grounds. A better understanding of spatial structure and mixing may help fisheries managers to successfully rebuild populations to sustainable levels while maximizing catches. We formulate a new seasonally and spatially explicit fisheries model that is fitted to conventional and electronic tag data, historic catch-at-age reconstructions, and otolith microchemistry stock-composition data to improve the capacity to assess past, current, and future population sizes of Atlantic bluefin tuna. We apply the model to estimate spatial and temporal mixing of the eastern (Mediterranean) and western (Gulf of Mexico) populations, and to reconstruct abundances from 1950 to 2008. We show that western and eastern populations have been reduced to 17% and 33%, respectively, of 1950 spawning stock biomass levels. Overfishing to below the biomass that produces maximum sustainable yield occurred in the 1960s and the late 1990s for western and eastern populations, respectively. The model predicts that mixing depends on season, ontogeny, and location, and is highest in the western Atlantic. Assuming that future catches are zero, western and eastern populations are predicted to recover to levels at maximum sustainable yield by 2025 and 2015, respectively. However, the western population will not recover with catches of 1750 and 12,900 tonnes (the “rebuilding quotas”) in the western and eastern Atlantic, respectively, with or without closures in the Gulf of Mexico. If future catches are double the rebuilding quotas, then rebuilding of both populations will be compromised. If fishing were to continue in the eastern Atlantic at the unregulated levels of 2007, both stocks would continue to decline. Since populations mix on North Atlantic foraging grounds, successful rebuilding policies will benefit from trans-Atlantic cooperation.This work was supported by grants from the TAG A Giant Foundation, the Monterey Bay Aquarium Foundation, the Lenfest Ocean Program, Washington, DC, USA, the Canadian Fisheries and Oceans International Governance Strategies Fund and the National Oceanic and Atmospheric Administration (NOAA) of the United States

    Quantifying mercury isotope dynamics in captive Pacific Bluefin tuna (Thunnus orientalis)

    Get PDF
    Analyses of mercury (Hg) isotope ratios in fish tissues are used increasingly to infer sources and biogeochemical processes of Hg in natural aquatic ecosystems. Controlled experiments that can couple internal Hg isotope behavior with traditional isotope tracers (delta C-13, delta N-15) can improve the applicability of Hg isotopes as natural ecological tracers. In this study, we investigated changes in Hg isotope ratios (delta Hg-202, Delta Hg-199) during bioaccumulation of natural diets in the pelagic Pacific bluefin tuna (Thunnus orientalis; PBFT). Juvenile PBFT were fed a mixture of natural prey and a dietary supplement (60% Loligo opalescens, 31% Sardinops sagax, 9% gel supplement) in captivity for 2914 days, and white muscle tissues were analyzed for Hg isotope ratios and compared to time in captivity and internal turnover of delta C-13 and delta N-15. PBFT muscle tissues equilibrated to Hg isotope ratios of the dietary mixture within similar to 700 days, after which we observed a cessation in further shifts in Delta Hg-199, and small but significant negative delta Hg-202 shifts from the dietary mixture. The internal behavior of Delta Hg-199 is consistent with previous fish studies, which showed an absence of Delta Hg-199 fractionation during Hg bioaccumulation. The negative delta Hg-202 shifts can be attributed to either preferential excretion of Hg with higher delta Hg-202 values or individual variability in captive PBFT feeding preferences and/or consumption rates. The overall internal behavior of Hg isotopes is similar to that described for delta C-13 and delta N-15, though observed Hg turnover was slower compared to carbon and nitrogen. This improved understanding of internal dynamics of Hg isotopes in relation to delta C-13 and delta N-15 enhances the applicability of Hg isotope ratios in fish tissues for tracing Hg sources in natural ecosystems.118Nsciescopu

    Flexible use of a dynamic energy landscape buffers a marine predator against extreme climate variability

    Get PDF
    Animal migrations track predictable seasonal patterns of resource availability and suitable thermal habitat. As climate change alters this 'energy landscape', some migratory species may struggle to adapt. We examined how climate variability influences movements, thermal habitat selection and energy intake by juvenile Pacific bluefin tuna (Thunnus orientalis) during seasonal foraging migrations in the California Current. We tracked 242 tuna across 15 years (2002-2016) with high-resolution archival tags, estimating their daily energy intake via abdominal warming associated with digestion (the 'heat increment of feeding'). The poleward extent of foraging migrations was flexible in response to climate variability, allowing tuna to track poleward displacements of thermal habitat where their standard metabolic rates were minimized. During a marine heatwave that saw temperature anomalies of up to +2.5 degrees C in the California Current, spatially explicit energy intake by tuna was approximately 15% lower than average. However, by shifting their mean seasonal migration approximately 900 km poleward, tuna remained in waters within their optimal temperature range and increased their energy intake. Our findings illustrate how tradeoffs between physiology and prey availability structure migration in a highly mobile vertebrate, and suggest that flexible migration strategies can buffer animals against energetic costs associated with climate variability and change

    Temperature Effects on Metabolic Rate of Juvenile Pacific Bluefin Tuna \u3ci\u3eThunnus Orientalis\u3c/i\u3e

    Get PDF
    Pacific bluefin tuna inhabit a wide range of thermal environments across the Pacific ocean. To examine how metabolism varies across this thermal range, we studied the effect of ambient water temperature on metabolic rate of juvenile Pacific bluefin tuna, Thunnus thynnus, swimming in a swim tunnel. Rate of oxygen consumption (MO2) was measured at ambient temperatures of 8–25°C and swimming speeds of 0.75–1.75 body lengths (BL) s–1. Pacific bluefin swimming at 1 BL s–1 per second exhibited a U-shaped curve of metabolic rate vs ambient temperature, with a thermal minimum zone between 15°C to 20°C. Minimum MO2 of 175±29 mg kg–1 h–1–1 was recorded at 15°C, while both cold and warm temperatures resulted in increased metabolic rates of 331±62 mg kg–1 h–1–1 at 8°C and 256±19 mg kg–1 h–1–1 at 25°C. Tailbeat frequencies were negatively correlated with ambient temperature. Additional experiments indicated that the increase in MO2 at low temperature occurred only at low swimming speeds. Ambient water temperature data from electronic tags implanted in wild fish indicate that Pacific bluefin of similar size to the experimental fish used in the swim tunnel spend most of their time in ambient temperatures in the metabolic thermal minimum zone

    Atlantic Bluefin Tuna (Thunnus thynnus) Diet in the Gulf of St. Lawrence and on the Eastern Scotian Shelf

    Get PDF
    The stomach contents of 68 Atlantic bluefin tuna (Thunnus thynnus) landed in Port Hood and Canso, Nova Scotia, in 2010, were analyzed to characterize the diet of bluefin tuna at the two locations. Of the sampled fish, 54 stomachs had contents. Pelagic schooling fish such as herring (Clupea harengus) and mackerel (Scomber scombrus) dominated the diets in both regions. However, a number of rare species, including demersal species, were also observed. Despite the difference in location and the significantly larger size of the Atlantic bluefin tuna landed in Port Hood, the diets of the Atlantic bluefin tuna landed at both sites were similar
    corecore