799 research outputs found
Tightly Correlated HI and FUV Emission in the Outskirts of M83
We compare sensitive HI data from The HI Nearby Galaxy Survey (THINGS) and
deep far UV (FUV) data from GALEX in the outer disk of M83. The FUV and HI maps
show a stunning spatial correlation out to almost 4 optical radii (r25),
roughly the extent of our maps. This underscores that HI traces the gas
reservoir for outer disk star formation and it implies that massive (at least
low level) star formation proceeds almost everywhere HI is observed. Whereas
the average FUV intensity decreases steadily with increasing radius before
leveling off at ~1.7 r25, the decline in HI surface density is more subtle. Low
HI columns (<2 M_solar/pc^2) contribute most of the mass in the outer disk,
which is not the case within r25. The time for star formation to consume the
available HI, inferred from the ratio of HI to FUV intensity, rises with
increasing radius before leveling off at ~100 Gyr, i.e., many Hubble times,
near ~1.7 r25. Assuming the relatively short H2 depletion times observed in the
inner parts of galaxies hold in outer disks, the conversion of HI into bound,
molecular clouds seems to limit star formation in outer galaxy disks. The long
consumption times suggest that most of the extended HI observed in M83 will not
be consumed by in situ star formation. However, even these low star formation
rates are enough to expect moderate chemical enrichment in a closed outer disk.Comment: Accepted for Publication in ApJ
The Distances of SNR W41 and overlapping HII regions
New HI images from the VLA Galactic Plane Survey show prominent absorption
features associated with the supernovae remnant G23.3-0.3 (SNR W41). We
highlight the HI absorption spectra and the CO emission spectra of eight
small regions on the face of W41, including four HII regions, three non-thermal
emission regions and one unclassified region. The maximum velocity of
absorption for W41 is 782 km/s and the CO cloud at radial velocity
955 km/s is behind W41. Because an extended TeV source, a diffuse X-ray
enhancement and a large molecular cloud at radial velocity 775 km/s are
also projected at the center of W41, these yield the kinematic distance of 3.9
to 4.5 kpc for W41. For HII regions, our analyses reveal that both G23.42-0.21
and G23.07+0.25 are at the far kinematic distances (9.9 kpc and
10.6 kpc respectively) of their recombination-line velocities (1030.5 km/s
and 89.62.1 km/s respectively), G23.07-0.37 is at the near kinematic
distance (4.40.3 kpc) of its recombination-line velocity (82.72.0
km/s), and G23.27-0.27 is probably at the near kinematic distance (4.10.3
kpc) of its recombination-line velocity (76.10.6 km/s).Comment: 11 pages, 3 figs., 2 tables, accepted by A
A Magellanic Origin for the Warp of the Galaxy
We show that a Magellanic Cloud origin for the warp of the Milky Way can
explain most quantitative features of the outer HI layer recently identified by
Levine, Blitz & Heiles (2005). We construct a model similar to that of Weinberg
(1998) that produces distortions in the dark matter halo, and we calculate the
combined effect of these dark-halo distortions and the direct tidal forcing by
the Magellanic Clouds on the disk warp in the linear regime. The interaction of
the dark matter halo with the disk and resonances between the orbit of the
Clouds and the disk account for the large amplitudes observed for the vertical
m=0,1,2 harmonics. The observations lead to six constraints on warp forcing
mechanisms and our model reasonably approximates all six. The disk is shown to
be very dynamic, constantly changing its shape as the Clouds proceed along
their orbit. We discuss the challenges to MOND placed by the observations.Comment: 4 pages, 3 figures, submitted to ApJ Letters. Additional graphics, 3d
visualizations and movies available at
http://www.astro.umass.edu/~weinberg/lm
Kinetics of CH₂OO reactions with SO₂, NO₂, NO, H₂O and CH₃CHO as a function of pressure
Kinetics of CH₂OO Criegee intermediate reactions with SO₂, NO₂, NO, H₂O and CH₃CHO and CH₂I radical reactions with NO₂ are reported as a function of pressure at 295 K. Measurements were made under pseudo-first-order conditions using flash photolysis of CH₂I₂–O₂–N₂ gas mixtures in the presence of excess co-reagent combined with monitoring of HCHO reaction products by laser-induced fluorescence (LIF) spectroscopy and, for the reaction with SO₂, direct detection of CH₂OO by photoionisation mass spectrometry (PIMS). Rate coefficients for CH₂OO + SO₂ and CH₂OO + NO₂ are independent of pressure in the ranges studied and are (3.42 ± 0.42) × 10‾¹¹ cm³ s‾¹ (measured between 1.5 and 450 Torr) and (1.5 ± 0.5) × 10‾¹² cm³ s‾¹ (measured between 25 and 300 Torr), respectively. The rate coefficient for CH₂OO + CH₃CHO is pressure dependent, with the yield of HCHO decreasing with increasing pressure. Upper limits of 2 × 10−13 cm³ s‾¹ and 9 × 10−17 cm³ s‾¹ are placed on the rate coefficients for CH₂OO + NO and CH₂OO + H₂O, respectively. The upper limit for the rate coefficient for CH₂OO + H₂O is significantly lower than has been reported previously, with consequences for modelling of atmospheric impacts of CH₂OO chemistry
Unusually Luminous Giant Molecular Clouds in the Outer Disk of M33
We use high spatial resolution (~7pc) CARMA observations to derive detailed
properties for 8 giant molecular clouds (GMCs) at a galactocentric radius
corresponding to approximately two CO scale lengths, or ~0.5 optical radii
(r25), in the Local Group spiral galaxy M33. At this radius, molecular gas
fraction, dust-to-gas ratio and metallicity are much lower than in the inner
part of M33 or in a typical spiral galaxy. This allows us to probe the impact
of environment on GMC properties by comparing our measurements to previous data
from the inner disk of M33, the Milky Way and other nearby galaxies. The outer
disk clouds roughly fall on the size-linewidth relation defined by
extragalactic GMCs, but are slightly displaced from the luminosity-virial mass
relation in the sense of having high CO luminosity compared to the inferred
virial mass. This implies a different CO-to-H2 conversion factor, which is on
average a factor of two lower than the inner disk and the extragalactic
average. We attribute this to significantly higher measured brightness
temperatures of the outer disk clouds compared to the ancillary sample of GMCs,
which is likely an effect of enhanced radiation levels due to massive star
formation in the vicinity of our target field. Apart from brightness
temperature, the properties we determine for the outer disk GMCs in M33 do not
differ significantly from those of our comparison sample. In particular, the
combined sample of inner and outer disk M33 clouds covers roughly the same
range in size, linewidth, virial mass and CO luminosity than the sample of
Milky Way GMCs. When compared to the inner disk clouds in M33, however, we find
even the brightest outer disk clouds to be smaller than most of their inner
disk counterparts. This may be due to incomplete sampling or a potentially
steeper cloud mass function at larger radii.Comment: Accepted for Publication in ApJ; 7 pages, 4 figure
An instrument to measure fast gas phase radical kinetics at hight temperatures and pressures
Fast radical reactions are central to the chemistry of planetary atmospheres and combustion systems. Laser-induced fluorescence is a highly sensitive and selective technique that can be used to monitor a number of radical species in kinetics experiments, but is typically limited to low pressure systems owing to quenching of fluorescent states at higher pressures. The design and characterisation of an instrument is reported using laser-induced fluorescence detection to monitor fast radical kinetics (up to 25,000 s-1) at high temperatures and pressures by sampling from a high pressure reaction region to a low pressure detection region. Kinetics have been characterised at temperatures reaching 740 K and pressures up to 2 atm, with expected maximum operational conditions of up to ~ 900 K and ~ 5 atm. The distance between the point of sampling from the high pressure region and the point of probing within the low pressure region is critical to the measurement of fast kinetics. The instrumentation described in this work can be applied to the measurement of kinetics relevant to atmospheric and combustion chemistry
Fundamental Aspects of the ISM Fractality
The ubiquitous clumpy state of the ISM raises a fundamental and open problem
of physics, which is the correct statistical treatment of systems dominated by
long range interactions. A simple solvable hierarchical model is presented
which explains why systems dominated by gravity prefer to adopt a fractal
dimension around 2 or less, like the cold ISM and large scale structures. This
has direct relation with the general transparency, or blackness, of the
Universe.Comment: 6 pages, LaTeX2e, crckapb macro, no figure, uuencoded compressed tar
file. To be published in the proceeedings of the "Dust-Morphology"
conference, Johannesburg, 22-26 January, 1996, D. Block (ed.), (Kluwer
Dordrecht
Temperature and Pressure Dependent Kinetics of QOOH Decomposition and Reaction with O2: Experimental and Theoretical Investigations of QOOH Radicals Derived from Cl + (CH3)3COOH
QOOH radicals are key species in autoignition, produced by internal isomerisations of RO2 radicals, and are central to chain branching reactions in low temperature combustion. The kinetics of QOOH radical decomposition and reaction with O2 have been determined as a function of temperature and pressure, using observations of OH radical production and decay following H-atom abstraction from tertiary-butyl hydroperoxide ((CH3)3COOH) by Cl atoms to produce QOOH (.CH2(CH3)2COOH) radicals. The kinetics of QOOH decomposition have been investigated as a function of temperature (251 to 298 K), and pressure (10 to 350 Torr), in helium and nitrogen bath gases, and those of the reaction between QOOH and O2 have been investigated as a function of temperature (251 to 304 K), and pressure (10 to 100 Torr) in He and N2. Decomposition of the QOOH radicals was observed to display temperature and pressure dependence, with a barrier height for decomposition of (44.7 ± 4.0) kJ mol-1 determined by master equation fitting to the experimental data. The rate coefficient for the reaction between QOOH and O2 was determined to be (5.6 ± 1.7) × 10-13 cm3 s-1 at 298 K, with no significant dependence on pressure, and can be described by the Arrhenius parameters A = (7.3 ± 6.8) × 10-14 cm3 s-1 and Ea = -(5.4 ± 2.1) kJ mol-1 in the temperature range 251 to 304 K. This work represents the first measurements of any QOOH radical kinetics as a function of temperature and pressure
- …