114 research outputs found
Deciphering the expression of climate change within the Lower Colorado River basin by stochastic simulation of convective rainfall
In drylands, convective rainstorms typically control runoff, streamflow, water supply and flood risk to human populations, and ecological water availability at multiple spatial scales. Since drainage basin water balance is sensitive to climate, it is important to improve characterization of convective rainstorms in a manner that enables statistical assessment of rainfall at high spatial and temporal resolution, and the prediction of plausible manifestations of climate change. Here we present a simple rainstorm generator, STORM, for convective storm simulation. It was created using data from a rain gauge network in one dryland drainage basin, but is applicable anywhere. We employ STORMto assess watershed rainfall under climate change simulations that reflect differences in wetness/ storminess, and thus provide insight into observed or projected regional hydrologic trends. Our analysis documents historical, regional climate change manifesting as a multidecadal decline in rainfall intensity, which we suggest has negatively impacted ephemeral runoff in the Lower Colorado River basin, but has not contributed substantially to regional negative streamflow trends
Local and non-local controls on seasonal variations in water availability and use by riparian trees along a hydroclimatic gradient
As global climate change continues to impact regional water cycles, we may expect further shifts in water availability to forests that create challenges for certain species and biomes. Lowland deciduous riparian forests are particularly vulnerable because tree species cannot migrate out of the stream corridor, and they rely on root zone water availability that is controlled by variations in both local climate conditions (e.g. precipitation, evaporation, and infiltration) and non-local hydroclimatic forcing (e.g. streamflow, snowmelt, recharge). To determine how the seasonal water source usage of riparian trees is controlled by local versus non-local variability in hydroclimatic regime, we reconstructed the seasonal oxygen isotope (δ18O) signature of water used by two riparian tree species with contrasting rooting depths, comprising ~800 δ18O tree-ring cellulose measurements from 12 tree-level decadal time-series at sub-annual resolution (six samples per year), along a strong hydroclimatic gradient within the Rhône River basin, SE France. These results were evaluated alongside δ18O measurements made from potential endmember water sources and independent hydroclimatic metrics. Thus we characterize the seasonal evolution of both potential water availability at distinct rooting depths and tree water source use and investigate the generalized riparian tree response to seasonal variations in local versus non-local hydroclimatic forcing over a decade. We show: (a) distinct seasonal water use between species, based on differential access to groundwater; (b) substantial source switching in both species based on evolving water availability; and (c) that riparian trees are more dependent on locally controlled soil moisture with distance downstream, creating increased vulnerability to locally increasing temperatures. We also find that deeply rooted trees in lowland riparian floodplains are potentially vulnerable to climate change because of their high dependence on water supply from mountains. This effect is more pronounced downstream, where seasonal water table decline may lead to loss of water required for deeply rooted trees
Hydrologic indicators of hot spots and hot moments of mercury methylation potential along river corridors
The authors acknowledge financial support from the National Science Foundation: EAR-1226741 (to M.B.S.) and EAR-1225630 (to J.D.B.), and from the REG Trust (to M.B.S.).The biogeochemical cycling of metals and other contaminants in river-floodplain corridors is controlled by microbial activity responding to dynamic redox conditions. Riverine flooding thus has the potential to affect speciation of redox-sensitive metals such as mercury (Hg). Therefore, inundation history over a period of decades potentially holds information on past production of bioavailable Hg. We investigate this within a Northern California river system with a legacy of landscape-scale 19th century hydraulic gold mining. We combine hydraulic modeling, Hg measurements in sediment and biota, and first-order calculations of mercury transformation to assess the potential role of river floodplains in producing monomethylmercury (MMHg), a neurotoxin which accumulates in local and migratory food webs. We identify frequently inundated floodplain areas, as well as floodplain areas inundated for long periods. We quantify the probability of MMHg production potential (MPP) associated with hydrology in each sector of the river system as a function of the spatial patterns of overbank inundation and drainage, which affect long-term redox history of contaminated sediments. Our findings identify river floodplains as periodic, temporary, yet potentially important, loci of biogeochemical transformation in which contaminants may undergo change during limited periods of the hydrologic record. We suggest that inundation is an important driver of MPP in river corridors and that the entire flow history must be analyzed retrospectively in terms of inundation magnitude and frequency in order to accurately assess biogeochemical risks, rather than merely highlighting the largest floods or low-flow periods. MMHg bioaccumulation within the aquatic food web in this system may pose a major risk to humans and waterfowl that eat migratory salmonids, which are being encouraged to come up these rivers to spawn. There is a long-term pattern of MPP under the current flow regime that is likely to be accentuated by increasingly common large floods with extended duration.PostprintPeer reviewe
STORM v.2: A simple, stochastic decision-support tool for exploring the impacts of climate and climate change at, and near the land surface in gauged watersheds
Climate change is expected to have major impacts on land surface and subsurface processes through its expression in the hydrological cycle, but the impacts to any particular basin or region are highly uncertain. Non-stationarities in the frequency, magnitude, duration, and timing of rainfall events have important implications for human societies, water resources, and ecosystems. The conventional approach for assessing the impacts of climate change is to downscale global climate model output and use it to drive regional and local models that express the climate within hydrology near the land surface. While this approach may be useful for linking global general circulation models to the regional hydrological cycle, it is limited for examining the details of hydrological response to climate forcing for a specific location over timescales relevant to decision-makers. For example, the management of a flood or a drought hazard requires detailed information that includes uncertainty based on the variability in storm characteristics rather than on the differences between models within an ensemble. To fill this gap, we present the second version of our STOchastic Rainfall Model (STORM), an open-source and user-friendly modelling framework for simulating a climatic expression as rainfall fields over a basin. This work showcases the use of STORM in simulating ensembles of realistic sequences, and spatial patterns of rainstorms for current climate conditions, and bespoke climate change scenarios that are likely to affect the water balance near the Earth's surface. We outline and detail STORM's new approaches as follows: one copula for linking marginal distributions of storm intensity and duration; orographic stratification of rainfall using the copula approach; a radial decay rate for rainfall intensity which takes into consideration potential, but unrecorded, maximum storm intensities; an optional component to simulate storm start dates and times via circular/directional statistics; and a simple implementation for modelling future climate scenarios. We also introduce a new pre-processing module that facilitates the generation of model input in the form of probability density functions (PDFs) from historical data for subsequent stochastic sampling. Independent validation showed that the average performance of STORM falls within 5.5 % of the historical seasonal total rainfall in the Walnut Gulch Experimental Watershed (Arizona, USA) that occurred in the current century
DRYP 1.0: a parsimonious hydrological model of DRYland Partitioning of the water balance
Dryland regions are characterized by water scarcity and are facing major challenges under climate change. One difficulty is anticipating how rainfall will be partitioned into evaporative losses, groundwater, soil moisture and runoff (the water balance) in the future, which has important implications for water resources and dryland ecosystems. However, in order to effectively estimate the water balance, hydrological models in drylands need to capture the key processes at the appropriate spatiotemporal scales including spatially restricted and temporally brief rainfall, high evaporation rates, transmission losses and focused groundwater recharge. Lack of available data and the high computational costs of explicit representation of ephemeral surface-groundwater interactions restrict the usefulness of most hydrological models in these environments. Therefore, here we have developed a parsimonious hydrological model (DRYP) that incorporates the key processes of water partitioning in dryland regions, and we tested it in the data-rich Walnut Gulch Experimental Watershed against measurements of streamflow, soil moisture and evapotranspiration. Overall, DRYP showed skill in quantifying the main components of the dryland water balance including monthly observations of streamflow (Nash efficiency (NSE) ~0.7), evapotranspiration (NSE > 0.6) and soil moisture (NSE ~0.7). The model showed that evapotranspiration consumes > 90 % of the total precipitation input to the catchment, and that < 1 % leaves the catchment as streamflow. Greater than 90 % of the overland flow generated in the catchment is lost through ephemeral channels as transmission losses. However, only ~35 % of the total transmission losses percolate to the groundwater aquifer as focused groundwater recharge, whereas the rest is lost to the atmosphere as riparian evapotranspiration. Overall, DRYP is a modular, versatile and parsimonious Python-based model which can be used to anticipate and plan for climatic and anthropogenic changes to water fluxes and storage in dryland region
Sensitivity of rainfall extremes to unprecedented Indian Ocean Dipole events
Strong positive Indian Ocean Dipole (pIOD) events like those in 1997 and 2019 caused significant flooding in East Africa. While future projections indicate an increase in pIOD events, limited historical data hinders a comprehensive understanding of these extremes, particularly for unprecedented events. To overcome this we utilize a large ensemble of seasonal reforecast simulations, which show that regional rainfall continues to increase with pIOD magnitude, with no apparent limit. In particular we find that extreme rain days are highly sensitive to the pIOD index and their seasonal frequency increases super‐linearly with higher pIOD magnitudes. It is vital that socio‐economic systems and infrastructure are able to handle not only the increasing frequency of events like 1997 and 2019 but also unprecedented seasons of extreme rainfall driven by as‐yet‐unseen pIOD events. Future studies should prioritize understanding the hydrological implications and population exposure to these unprecedented extremes in East Africa
Exploring exogenous controls on short- versus long-term erosion rates globally
Erosion is directly tied to landscape evolution through the relationship between sediment flux and vertical lowering of the land surface. Therefore, the analysis of erosion rates across the planet measured over different temporal domains may provide perspectives on the drivers and processes of land surface change over various timescales. Different metrics are commonly used to quantify erosion (or denudation) over timescales of <101 years (suspended sediment flux) and 103–106 years (cosmogenic radionuclides), meaning that reconciling potentially contrasting rates at these timescales at any location is challenging. Studies over the last several decades into erosion rates and their controls have yielded valuable insights into geomorphic processes and landforms over time and space, but many are focused at local or regional scales. Gaps remain in understanding large-scale patterns and exogenous drivers (climatic, anthropogenic, tectonic) of erosion across the globe. Here we leverage the expanding availability and coverage of cosmogenic-derived erosion data and historical archives of suspended sediment yield to explore these controls more broadly and place them in the context of classical geomorphic theory. We make the following findings in this paper: (1) there are relationships between both long- and short-term erosion rates and mean annual precipitation, as well as aridity, similar to that proposed in classic geomorphic literature on erosion; (2) agricultural activities have apparently increased short-term erosion rates, outpacing natural drivers; (3) short-term erosion rates exceed long-term rates in all climatic regions except in mid- and high latitudes, where long-terms rates are higher due to the influence of repeated glacial cycles; and (4) tectonically active margins have generally higher long-term erosion rates and apparently lower rainfall thresholds for erosion which potentially arise due to steeper slopes and associated landslides, overcoming vegetative root reinforcement. These results highlight the complex interplay of external controls on land surface processes and reinforce the view that timescale of observation may reveal different erosion rates and principal controls
Sustained water storage in Horn of Africa drylands dominated by seasonal rainfall extremes
Rural communities in the Horn of Africa Drylands (HAD) are increasingly vulnerable to multi-season droughts due to the strong dependence of livelihoods on seasonal rainfall. We analysed multiple observational rainfall datasets for recent decadal trends in mean and extreme seasonal rainfall, as well as satellite-derived terrestrial water storage and soil moisture trends arising from two key rainfall seasons across various subregions of HAD. We show that, despite decreases in total March-April-May rainfall, total water storage in the HAD has increased. This trend correlates strongly with seasonal totals and especially with extreme rainfall in the two dominant HAD rainy seasons between 2003 and 2016. We further show that high-intensity October-November-December rainfall associated with positive Indian Ocean Dipole events lead to the largest seasonal increases in water storage that persist over multiple years. These findings suggest that developing groundwater resources in HAD could offset or mitigate the impacts of increasingly common droughts
Isotopic evidence for mercury photoreduction and retention on particles in surface waters of Central California, USA
Cache Creek (Coast Range, California) and the Yuba River (Sierra Nevada Foothills, California) are two river systems affected by extensive mercury (Hg) contamination due to legacy sources of Hg related to mining. Stable Hg isotope techniques have proven useful for elucidating the complex cycling of Hg within aquatic ecosystems, and we applied these techniques to improve understanding of Hg and methylmercury (MeHg) transformations in these watersheds. Total mercury (THg) concentrations and Hg stable isotope ratios were measured in filtered surface waters and suspended particulate matter collected from 14 sites within the Cache Cr. and Yuba R. watersheds. Filtered surface waters from both watersheds exhibited values of ∆199Hg (0.37‰ to 0.71‰), consistently elevated above those observed in sediments (∆199Hg average = 0.07‰). Associated suspended particulates from these surface water samples displayed a much greater range of values for ∆199Hg (−0.61‰ to 0.70‰), although suspended particulates from the Yuba R. exhibited mostly negative ∆199Hg values (−0.61‰ to 0.10‰). The relationship between ∆199Hg and ∆201Hg in the filtered surface waters and associated suspended particulates was calculated using a bivariate York regression, yielding a slope of 1.57 ± 0.49 (±2SE) for the Yuba R. and 1.40 ± 0.27 (±2SE) for Cache Cr., both within error of the previously reported experimentally-derived slopes for MeHg- and inorganic Hg(II)-photoreduction. This provides isotopic evidence that Hg photoreduction is occurring within these surface waters to a significant degree, and suspended particulate phases are retaining the reduced product of Hg photoreduction, particularly within the Yuba R. The isotopic compositions of filtered surface waters are consistent with the isotopic signatures recorded in biota at low trophic positions within these watersheds, suggesting that the reservoir of Hg incorporated within the biota of these systems is similar to the filter-passing Hg fraction in surface waters
Groundwater dependence of riparian woodlands and the disrupting effect of anthropogenically altered streamflow
Riparian ecosystems fundamentally depend on groundwater, especially in dryland regions, yet their water requirements and sources are rarely considered in water resource management decisions. Until recently, technological limitations and data gaps have hindered assessment of groundwater influences on riparian ecosystem health at the spatial and temporal scales relevant to policy and management. Here, we analyze Sentinel-2–derived normalized difference vegetation index (NDVI; n = 5,335,472 observations), field-based groundwater elevation (n = 32,051 observations), and streamflow alteration data for riparian woodland communities (n = 22,153 polygons) over a 5-y period (2015 to 2020) across California. We find that riparian woodlands exhibit a stress response to deeper groundwater, as evidenced by concurrent declines in greenness represented by NDVI. Furthermore, we find greater seasonal coupling of canopy greenness to groundwater for vegetation along streams with natural flow regimes in comparison with anthropogenically altered streams, particularly in the most water-limited regions. These patterns suggest that many riparian woodlands in California are subsidized by water management practices. Riparian woodland communities rely on naturally variable groundwater and streamflow components to sustain key ecological processes, such as recruitment and succession. Altered flow regimes, which stabilize streamflow throughout the year and artificially enhance water supplies to riparian vegetation in the dry season, disrupt the seasonal cycles of abiotic drivers to which these Mediterranean forests are adapted. Consequently, our analysis suggests that many riparian ecosystems have become reliant on anthropogenically altered flow regimes, making them more vulnerable and less resilient to rapid hydrologic change, potentially leading to future riparian forest loss across increasingly stressed dryland regions
- …