47 research outputs found

    On the Stability of Thermonuclear Burning Fronts in Type Ia Supernovae

    Full text link
    The propagation of cellularly stabilized thermonuclear flames is investigated by means of numerical simulations. In Type Ia supernova explosions the corresponding burning regime establishes at scales below the Gibson length. The cellular flame stabilization - which is a result of an interplay between the Landau-Darrieus instability and a nonlinear stabilization mechanism - is studied for the case of propagation into quiescent fuel as well as interaction with vortical fuel flows. Our simulations indicate that in thermonuclear supernova explosions stable cellular flames develop around the Gibson scale and that deflagration-to-detonation transition is unlikely to be triggered from flame evolution effects here.Comment: 6 pages, 2 figures, to appear in the proceedings of the IAU Colloquium 192, "Supernovae (10 years of SN1993J)", 22-26 April 2003, Valencia, Spain, Eds. J.M. Marcaide and K.W. Weiler, Springer Verla

    How strong can the coupling of leptonic photons be?

    Get PDF
    Consequences of possible existence of leptonic photon are considered for a range of values of leptonic charge. In the case of a strong Coulomb-like leptonic repulsion between electrons the existence of ordinary condensed matter is impossible: antineutrinos cannot neutralize this destructive repulsion. The upper limit of leptonic charge is inferred from the E\"{o}tv\"os type experiments. If however there exist light stable scalar bosons with leptonic charge (e.g. singlet antisneutrinos) they may neutralize the electron repulsion. Possible experimental manifestations of such leptonic bosons in gases and condensed matter are briefly discussed.Comment: 13 pages in standard LaTe

    The origin of the high velocity circumstellar gas around SN 1998S

    Get PDF
    Modelling of high resolution Balmer line profiles in the early-time spectra of SN 1998S shows that the inferred fast (roughly 400 km/s) circumstellar (CS) gas on days 23 and 42 post-explosion is confined to a narrow, negative velocity gradient shell just above the photosphere. This gas may be identified with a slow (v < 40 km/s) progenitor wind accelerated at the ejecta-wind interface. In this scenario, the photosphere coincides with a cool dense shell formed in the reverse shock. Acceleration by radiation from the supernova or by a shock-accelerated relativistic particle precursor are both possible explanations for the observed fast CS gas. An alternative, equally plausible scenario is that the fast CS gas is accelerated within shocked clouds engulfed by the outer shock, as it propagates through the intercloud wind.Comment: 9 pages, 6 figures. MNRAS, accepted. Typos added, acknowledgments correcte

    Mirror World, Supersymmetric Axion and Gamma Ray Bursts

    Full text link
    A modification of the relation between axion mass and the PQ constant permits a relaxation of the astrophysical constraints, considerably enlarging the allowed axion parameter space. We develop this idea in this paper, discussing a model for an {\it ultramassive} axion, which essentially represents a supersymmetric Weinberg-Wilczek axion of the mirror world. The experimental and astrophysical limits allow a PQ scale f_a ~ 10^4-10^6 GeV and a mass m_a ~ 1MeV, which can be accessible for future experiments. On a phenomenological ground, such an {\it ultramassive} axion turns out to be quite interesting. It can be produced during the gravitational collapse or during the merging of two compact objects, and its subsequent decay into e+e- provides an efficient mechanism for the transfer of the gravitational energy of the collapsing system to the electron-positron plasma. This could resolve the energy budget problem in the Gamma Ray Bursts and also help in understanding the SN type II explosion phenomena.Comment: 20 pages, 5 eps figures, added footnote and reference

    Have mirror micrometeorites been detected?

    Full text link
    Slow-moving (v15v \sim 15 km/s) 'dark matter particles' have allegedly been discovered in a recent experiment. We explore the possibility that these slow moving dark matter particles are small mirror matter dust particles originating from our solar system. Ways of further testing our hypothesis, including the possibility of observing these dust particles in cryogenic detectors such as NAUTILUS, are also discussed.Comment: Few changes, about 8 pages lon

    Positronium Portal into Hidden Sector: A new Experiment to Search for Mirror Dark Matter

    Full text link
    The understanding of the origin of dark matter has great importance for cosmology and particle physics. Several interesting extensions of the standard model dealing with solution of this problem motivate the concept of hidden sectors consisting of SU(3)xSU(2)_LxU(1)_Y singlet fields. Among these models, the mirror matter model is certainly one of the most interesting. The model explains the origin of parity violation in weak interactions, it could also explain the baryon asymmetry of the Universe and provide a natural ground for the explanation of dark matter. The mirror matter could have a portal to our world through photon-mirror photon mixing (epsilon). This mixing would lead to orthopositronium (o-Ps) to mirror orthopositronium oscillations, the experimental signature of which is the apparently invisible decay of o-Ps. In this paper, we describe an experiment to search for the decay o-Ps -> invisible in vacuum by using a pulsed slow positron beam and a massive 4pi BGO crystal calorimeter. The developed high efficiency positron tagging system, the low calorimeter energy threshold and high hermiticity allow the expected sensitivity in mixing strength to be epsilon about 10^-9, which is more than one order of magnitude below the current Big Bang Nucleosynthesis limit and in a region of parameter space of great theoretical and phenomenological interest. The vacuum experiment with such sensitivity is particularly timely in light of the recent DAMA/LIBRA observations of the annual modulation signal consistent with a mirror type dark matter interpretation.Comment: 40 pages, 29 Figures 2 Tables v2: Ref. added, Fig. 29 and some text added to explain idea for backscattering e+ background suppression, corrected typos v3: minor corrections: Eq 2.1 corrected (6 lines-> 5 lines), Eq.2.17: two extra "-" signs remove

    Geophysical constraints on mirror matter within the Earth

    Full text link
    We have performed a detailed investigation of geophysical constraints on the possible admixture of mirror matter inside the Earth. On the basis of the Preliminary Reference Earth Model (PREM) -- the `Standard Model' of the Earth's interior -- we have developed a method which allows one to compute changes in various quantities characterising the Earth (mass, moment of inertia, normal mode frequencies etc.)due to the presence of mirror matter. As a result we have been able to obtain for the first time the direct upper bounds on the possible concentration of the mirror matter in the Earth. In terms of the ratio of the mirror mass to the Earth mass a conservative upper bound is 3.8×1033.8\times 10^{-3}. We then analysed possible mechanisms (such as lunar and solar tidal forces, meteorite impacts and earthquakes) of exciting mirror matter oscillations around the Earth centre. Such oscillations could manifest themselves through global variations of the gravitational acceleration at the Earth's surface. We conclude that such variations are too small to be observed. Our results are valid for other types of hypothetical matter coupled to ordinary matter by gravitation only (e.g. the shadow matter of superstring theories).Comment: 25 pages, in RevTeX, to appear in Phys.Rev.

    TeV-scale bileptons, see-saw type II and lepton flavor violation in core-collapse supernova

    Full text link
    Electrons and electron neutrinos in the inner core of the core-collapse supernova are highly degenerate and therefore numerous during a few seconds of explosion. In contrast, leptons of other flavors are non-degenerate and therefore relatively scarce. This is due to lepton flavor conservation. If this conservation law is broken by some non-standard interactions, electron neutrinos are converted to muon and tau-neutrinos, and electrons - to muons. This affects the supernova dynamics and the supernova neutrino signal. We consider lepton flavor violating interactions mediated by scalar bileptons, i.e. heavy scalars with lepton number 2. It is shown that in case of TeV-mass bileptons the electron fermi gas is equilibrated with non-electron species inside the inner supernova core at a time-scale of order of (1-100) ms. In particular, a scalar triplet which generates neutrino masses through the see-saw type II mechanism is considered. It is found that supernova core is sensitive to yet unprobed values of masses and couplings of the triplet.Comment: accepted to Eur.Phys.J.

    Effect of Sun and Planet-Bound Dark Matter on Planet and Satellite Dynamics in the Solar System

    Full text link
    We apply our recent results on orbital dynamics around a mass-varying central body to the phenomenon of accretion of Dark Matter-assumed not self-annihilating-on the Sun and the major bodies of the solar system due to its motion throughout the Milky Way halo. We inspect its consequences on the orbits of the planets and their satellites over timescales of the order of the age of the solar system. It turns out that a solar Dark Matter accretion rate of \approx 10^-12 yr^-1, inferred from the upper limit \Delta M/M= 0.02-0.05 on the Sun's Dark Matter content, assumed somehow accumulated during last 4.5 Gyr, would have displaced the planets faraway by about 10^-2-10^1 au 4.5 Gyr ago. Another consequence is that the semimajor axis of the Earth's orbit, approximately equal to the Astronomical Unit, would undergo a secular increase of 0.02-0.05 m yr^-1, in agreement with the latest observational determinations of the Astronomical Unit secular increase of 0.07 +/- 0.02 m yr^-1 and 0.05 m yr^-1. By assuming that the Sun will continue to accrete Dark Matter in the next billions year at the same rate as in the past, the orbits of its planets will shrink by about 10^-1-10^1 au (\approx 0.2-0.5 au for the Earth), with consequences for their fate, especially of the inner planets. On the other hand, lunar and planetary ephemerides set upper bounds on the secular variation of the Sun's gravitational parameter GM which are one one order of magnitude smaller than 10^-12 yr^-1. Dark Matter accretion on planets has, instead, less relevant consequences for their satellites. Indeed, 4.5 Gyr ago their orbits would have been just 10^-2-10^1 km wider than now. (Abridged)Comment: LaTex2e, 17 pages, no figures, 7 tables, 61 references. Small problem with a reference fixed. To appear in Journal of Cosmology and Astroparticle Physics (JCAP

    Mirror Dark Matter and Core Density of Galaxies

    Full text link
    We present a particle physics realization of a recent suggestion by Spergel and Steinhardt that collisional but dissipationless dark matter may resolve the core density problem in dark matter-dominated galaxies such as the dwarf galaxies. The realization is the asymmetric mirror universe model introduced to explain the neutrino puzzles and the microlensing anomaly. The mirror baryons are the dark matter particles with the desired properties. The time scales are right for resolution of the core density problem and formation of mirror stars (MACHOs observed in microlensing experiments). The mass of the region homogenized by Silk damping is between a dwarf and a large galaxy.Comment: 9 pages, LaTex. The present version shows that atomic scattering inherent in the mirror model can solve the core density problem without the need for an extra U(1) discussed in the original version; all conclusions are unchanged. This version is accepted for publication in Phys. Rev.
    corecore