13 research outputs found

    Sedimentology and origin of lower Cretaceous pelagic carbonates and redeposited clastics at DSDP Hole 76-534A

    No full text
    Drilling at Site 534 in the Blake-Bahama Basin recovered 268 m of Lower Cretaceous, Berriasian to Hauterivian, pelagic carbonates, together with volumetrically minor intercalations of claystone, black shales, and terrigenous and calcareous elastics. Radiolarian nannofossil pelagic carbonates accumulated in water depths of about 3300 to 3650 m, below the ACD (aragonite compensation depth) but close to the CCD (calcite compensation depth). Radiolarian abundance points to a relatively fertile ocean. In the Hauterivian and Barremian, during times of warm, humid climate and rising sea level, turbiditic influxes of both terrigenous and calcareous sediments, and minor debris flows were derived from the adjacent Blake Plateau. The claystones and black shales accumulated on the continental rise, then were redeposited onto the abyssal plain by turbidity currents. Dark organic-rich and pale organic-poor couplets are attributed to climatic variations on land, which controlled the input of terrigenous organic matter. Highly persistent, fine, parallel lamination in the pelagic chalks is explained by repeated algal "blooms." During early diagenesis, organic-poor carbonates remained oxygenated and were cemented early, whereas organic-rich intervals, devoid of burrowing organisms, continued to compact later in diagenesis. Interstitial dissolved-oxygen levels fluctuated repeatedly, but bottom waters were never static nor anoxic. The central western Atlantic in the Lower Cretaceous was thus a relatively fertile and wellmixed ocean basin

    Early History of the Atlantic Ocean and Gas Hydrates on the Blake Outer Ridge: Results of the Deep Sea Drilling Project Leg 76

    Get PDF
    Leg 76 of the Deep Sea Drilling Project achieved two major scientific objectives. The first objective was met at Site 533, where on the Blake Outer Ridge, gas hydrates were identified by geophysical, geochemical, and geological studies. Gas-hydrate decomposition produced a volumetric expansion of 20:1 of gas volume to pore-fluid volume; this expansion exceeded by about a factor of four the volume of gas that could be released from solution in pore water under similar conditions. The gas hydrate includes methane, ethane, propane, and isobutane but apparently excluded normal butane and higher molecular weight hydrocarbons as predicted from gas hydrate crystallography. For the first time, marine gas hydrates were tested with a pressure core barrel. The second objective was achieved when coring at Site 534 in the Blake-Bahama Basin sampled the oldest oceanic sediments yet recovered. The sequence of oceanic basement and overlying sediments documents the geologic history of the early stages of the opening of the North Atlantic Ocean in detail. The oldest oceanic sediments are red claystones and laminated green and brown claystones of middle Callovian age. This finding supports the interpretation that the beginning of the modern North Atlantic occurred in the early Callovian (~155 m.y. B.P.), as much as 20 m.y. later in time than often previously thought
    corecore