26 research outputs found
Acoustic risk balancing by marine mammals : anthropogenic noise can influence the foraging decisions by seals
Funding: Natural Environment Research Council (Grant Number(s): NE/J004251/1, NE/R015007/1)1. Avoidance of anthropogenic sounds has been measured in many species. The results, which are typically based on observations in limited exposure contexts, are frequently used to inform policy and the regulation of industrial activities. However, the occurrence and magnitude of avoidance may be a consequence of complex risk-balancing decisions made by animals. The importance of the factors in decision-making, such as perceived risks associated with the sounds or prey quantity and quality during sound exposure, is unknown. 2. Here we address this knowledge gap by measuring the relative influence of perceived ârisk of a sound (silence, pile driving, and a tidal turbine) and prey patch quality on decision-making and foraging success in grey seals Halichoerus grypus. 3. Seals were given access to two underwater âprey patchesâ in an experimental pool where fish were delivered at controlled rates to simulate a low-density (LD) and a high-density (HD) prey patch. Acoustic playbacks were made using an underwater speaker above one of the prey patches (randomised during the study), and three decision and foraging metrics (foraging duration, foraging effort allocation between the prey patches, and foraging success) were measured. 4. Foraging success was highest during silent controls and was similar regardless of speaker location (LD/HD). Under the tidal turbine and pile-driving treatments, foraging success was similar to the controls when the speaker was located at the HD prey patch but was significantly reduced (~16%â28% lower) when the speaker was located at the LD prey patch. Foraging decisions by the seals were consistent with a risk/profit balancing approach. Avoidance rates depend on the quality of the prey patch as well as the perceived risk. 5. Policy implications. The results suggest that foraging context is important when interpreting avoidance behaviour and should be considered when predicting the effects of anthropogenic activities. For example, sound exposure in different prey patch qualities may result in markedly different avoidance behaviour, potentially leading to contrasting predictions of impact in Environmental Assessments. We recommend future studies explicitly consider foraging context, and other contextual factors such as behavioural state (e.g. foraging or travelling) and habitat quality.Publisher PDFPeer reviewe
Anthropogenic noise is associated with changes in acoustic but not visual signals in red-winged blackbirds
Some birds in noisy areas produce songs with higher frequency and/or amplitude and altered timing compared to individuals in quiet areas. These changes may function to increase the efficacy of acoustic signals by reducing masking by noise. We collected audio recordings of red-winged blackbirds and measured noise levels. We found that males in noisier places produced songs with fewer syllables and slower repeat rate of elements in some components (rattles). Birds may also improve the efficacy of communication in noise by increasing usage of other signaling modalities. Red-winged blackbirds also perform a visual display in different intensities while singing. We also tested whether this species performs the visual display in different intensities according to current noise levels, and predicted that if the efficacy of songs is impaired in noisy places, males would compensate by performing a more intense visual display. For this, we also collected visual recordings from the same males from which we obtained acoustic recordings. We found no association between acoustic noise and the intensity of the visual display; thus, our results do not support the idea that males are using the visual display as a backup signal to communicate under acoustic noise. We discuss some possible explanations of this negative finding and for the observed noise-related changes in song length and rattle rate in the context of communication under noise