31 research outputs found

    Characterization of the glass transition in vitreous silica by temperature scanning small-angle X-ray scattering

    Full text link
    The temperature dependence of the x-ray scattering in the region below the first sharp diffraction peak was measured for silica glasses with low and high OH content (GE-124 and Corning 7980). Data were obtained upon scanning the temperature at 10, 40 and 80 K/min between 400 K and 1820 K. The measurements resolve, for the first time, the hysteresis between heating and cooling through the glass transition for silica glass, and the data have a better signal to noise ratio than previous light scattering and differential thermal analysis data. For the glass with the higher hydroxyl concentration the glass transition is broader and at a lower temperature. Fits of the data to the Adam-Gibbs-Fulcher equation provide updated kinetic parameters for this very strong glass. The temperature derivative of the observed X-ray scattering matches that of light scattering to within 14%.Comment: EurophysicsLetters, in pres

    Experimental clues of soft glassy rheology in strained filled elastomers

    No full text
    International audienceTensile stress-relaxation measurements have been performed on a series of cross-linked filled elastomers. The fillers are chosen in order to investigate the effect of the filler-filler and the filler-matrix interactions on the time dependence of the tensile relaxation modulus E(t) after UP and DOWN jumps. For the carbon black filled sample (strong filler-elastomer interaction) E(t) decreases as log(t) when the strain epsilon is strictly larger than 0.2 and reached by UP jumps. For the silica filled samples in the same conditions, and for all samples after a DOWN jump including epsilon = 0.2, the experimental data can be fitted with a power law equation characterized by the exponent m. Thus, in all cases, |dE(t)⁄dt| scales as t^(-α) with α=m+1. Pertinence of the Soft Glassy Rheology (SGR) model for interpreting the present results is examined. It is shown that α could be equivalent to the effective noise temperature x and related to the polymer chain mobility

    SAXS characterization of carbon aerogels for catalytic supports.

    No full text
    Disponible en ligne : http://www.sciencedirect.comInternational audienc
    corecore