96 research outputs found

    Thermodynamic coherence of the Variational Average-Atom in Quantum Plasmas (VAAQP) approach

    Full text link
    A new code called VAAQP (Variational Average-Atom in Quantum Plasmas) is reported. The model as well as main results of previous studies are briefly recalled. The code is based on a new fully variational model of dense plasmas at equilibrium with quantum treatment of all electrons. The code can calculate the Average Atom structure and the mean ionization from the variational equations respecting the virial theorem and without imposing the neutrality of the Wigner-Seitz sphere. The formula obtained for the electronic pressure is simple and does not require any numerical differentiation. A description of the principal features of the code is given. The thermodynamic consistency of the results obtained with VAAQP is shown by a comparison with another approach on the example of the aluminium 10 eV isotherm EOS curve. A first comparison to an INFERNO-type model is also presented

    A variational atomic model of plasma accounting for ion radial correlations and electronic structure of ions (VAMPIRES)

    Full text link
    We propose a model of ion-electron plasma (or nucleus-electron plasma) that accounts for the electronic structure around nuclei (i.e. ion structure) as well as for ion-ion correlations. The model equations are obtained through the minimization of an approximate free-energy functional, and it is shown that the model fulfills the virial theorem. The main hypotheses of this model are 1) nuclei are treated as classical indistinguishable particles 2) electronic density is seen as a superposition of a uniform background and spherically-symmetric distributions around each nucleus (system of ions in a plasma) 3) free energy is approached using a cluster expansion (non-overlapping ions) 4) resulting ion fluid is modeled through an approximate integral equation. In the present paper, the model is described only in its average-atom version

    Application of Hartree-Fock theory of fluctuations to opacity calculation

    Get PDF
    The Hartree-Fock theory of fluctuations leading to simple formulae for configuration probabilities is used in a Detailed Configuration Accounting calculation of opacity in the case of an iron plasma. A direct Detailed Term Accounting method is also applied. The correlations of subshell occupation numbers, which are accounted for in the HF theory, show small effect on the theoretical spectrum corresponding to conditions of a recent measuremen

    A consistent approach for mixed detailed and statistical calculation of opacities in hot plasmas

    Full text link
    Absorption and emission spectra of plasmas with multicharged-ions contain transition arrays with a huge number of coalescent electric-dipole (E1) lines, which are well suited for treatment by the unresolved transition array and derivative methods. But, some transition arrays show detailed features whose description requires diagonalization of the Hamiltonian matrix. We developed a hybrid opacity code, called SCORCG, which combines statistical approaches with fine-structure calculations consistently. Data required for the computation of detailed transition arrays (atomic configurations and atomic radial integrals) are calculated by the super-configuration code SCO (Super-Configuration Opacity), which provides an accurate description of the plasma screening effects on the wave-functions. Level energies as well as position and strength of spectral lines are computed by an adapted RCG routine of R. D. Cowan. The resulting code provides opacities for hot plasmas and can handle mid-Z elements. The code is also a powerful tool for the interpretation of recent laser and Z-pinch experimental spectra, as well as for validation of statistical methods.Comment: submitted to "High Energy Density Physics
    • …
    corecore