44 research outputs found

    О нижней оценке для одной квадратичной задачи намногообразии Штифеля

    Get PDF
    Despite technological advances in metabolomics, large parts of the human metabolome are still unexplored. In an untargeted metabolomics screen aiming to identify substrates of the orphan transporter ATP-binding cassette subfamily C member 5 (ABCC5), we identified a class of mammalian metabolites, N-lactoyl-amino acids. Using parallel protein fractionation in conjunction with shotgun proteomics on fractions containing N-lactoyl-Phe-forming activity, we unexpectedly found that a protease, cytosolic nonspecific dipeptidase 2 (CNDP2), catalyzes their formation. N-lactoyl-amino acids are ubiquitous pseudodipeptides of lactic acid and amino acids that are rapidly formed by reverse proteolysis, a process previously considered to be negligible in vivo. The plasma levels of these metabolites strongly correlate with plasma levels of lactate and amino acid, as shown by increased levels after physical exercise and in patients with phenylketonuria who suffer from elevated Phe levels. Our approach to identify unknown metabolites and their biosynthesis has general applicability in the further exploration of the human metabolome

    Ubiquitinome Profiling Reveals <i>in Vivo</i> UBE2D3 Targets and Implicates UBE2D3 in Protein Quality Control

    Get PDF
    Ubiquitination has crucial roles in many cellular processes, and dysregulation of ubiquitin machinery enzymes can result in various forms of pathogenesis. Cells only have a limited set of ubiquitin-conjugating (E2) enzymes to support the ubiquitination of many cellular targets. As individual E2 enzymes have many different substrates and interactions between E2 enzymes and their substrates can be transient, it is challenging to define all in vivo substrates of an individual E2 and the cellular processes it affects. Particularly challenging in this respect is UBE2D3, an E2 enzyme with promiscuous activity in vitro but less defined roles in vivo. Here, we set out to identify in vivo targets of UBE2D3 by using stable isotope labeling by amino acids in cell culture–based and label-free quantitative ubiquitin diGly proteomics to study global proteome and ubiquitinome changes associated with UBE2D3 depletion. UBE2D3 depletion changed the global proteome, with the levels of proteins from metabolic pathways, in particular retinol metabolism, being the most affected. However, the impact of UBE2D3 depletion on the ubiquitinome was much more prominent. Interestingly, molecular pathways related to mRNA translation were the most affected. Indeed, we find that ubiquitination of the ribosomal proteins RPS10 and RPS20, critical for ribosome-associated protein quality control, is dependent on UBE2D3. We show by Targets of Ubiquitin Ligases Identified by Proteomics 2 methodology that RPS10 and RPS20 are direct targets of UBE2D3 and demonstrate that the catalytic activity of UBE2D3 is required to ubiquitinate RPS10 in vivo. In addition, our data suggest that UBE2D3 acts at multiple levels in autophagic protein quality control. Collectively, our findings show that depletion of an E2 enzyme in combination with quantitative diGly-based ubiquitinome profiling is a powerful tool to identify new in vivo E2 substrates, as we have done here for UBE2D3. Our work provides an important resource for further studies on the in vivo functions of UBE2D3.Dutch Ministry of Health KWF-NKI2012- 5305Dutch Cancer Society 11369/2017-

    Эксплуатационные показатели качества транспортной телекоммуникационной первичной сети Украины

    Get PDF
    Приведены статистические данные о количестве, причинах и характере повреждений подземных волоконно-оптических линий связи, которые являются основой транспортной телекоммуникационной первичной сети на примере Донецкой и Луганской областей за период с 2001 по 2010 годы. Сравнение значений этих характеристик со значениями аналогичных параметров за 2001—2005 гг. позволяет разработать рекомендации по повышению надежности телекоммуникационных сетей.В роботі наведено статистичні дані про кількість, причини та характер пошкоджень підземних волоконно-оптичних ліній зв’язку, які є основою транспортної телекомунікаційної первинної мережі, на прикладі Донецької та Луганської областей за період з 2001 по 2010 рр. Порівняння значень цих характеристик із значеннями аналогічних характеристик за 2001—2005 рр. дозволяє розробити рекомендації по підвищенню надійності телекомунікаціїйних мереж.The paper presents statistical data on the number, nature and causes of the damage to underground fiber-optic communication lines, on which the transport telecommunication primary network is based, using an example of Donetsk and Lugansk regions for the period between 2001 and 2010. Comparison of these characteristics with the values of similar parameters over 2001—2005 allows to develop recommendations for the improvement of the reliability of telecommunication networks

    H4K20me2 distinguishes pre-replicative from post-replicative chromatin to appropriately direct DNA repair pathway choice by 53BP1-RIF1-MAD2L2

    Get PDF
    The main pathways for the repair of DNA double strand breaks (DSBs) are non-homologous end-joining (NHEJ) and homologous recombination directed repair (HDR). These operate mutually exclusive and are activated by 53BP1 and BRCA1, respectively. As HDR can only succeed in the presence of an intact copy of replicated DNA, cells employ several mechanisms to inactivate HDR in the G1 phase of cell cycle. As cells enter S-phase, these inhibitory mechanisms are released and HDR becomes active. However, during DNA replication, NHEJ and HDR pathways are both functional and non-replicated and replicated DNA regions co-exist, with the risk of aberrant HDR activity at DSBs in non-replicated DNA. It has become clear that DNA repair pathway choice depends on inhibition of DNA end-resection by 53BP1 and its downstream factors RIF1 and MAD2L2. However, it is unknown how MAD2L2 accumulates at DSBs to participate in DNA repair pathway control and how the NHEJ and HDR repair pathways are appropriately activated at DSBs with respect to the replication status of the DNA, such that NHEJ acts at DSBs in pre-replicative DNA and HDR acts on DSBs in post-replicative DNA. Here we show that MAD2L2 is recruited to DSBs in H4K20 dimethylated chromatin by forming a protein complex with 53BP1 and RIF1 and that MAD2L2, similar to 53BP1 and RIF1, suppresses DSB accumulation of BRCA1. Furthermore, we show that the replication status of the DNA locally ensures the engagement of the correct DNA repair pathway, through epigenetics. In non-replicated DNA, saturating levels of the 53BP1 binding site, di-methylated lysine 20 of histone 4 (H4K20me2), lead to robust 53BP1-RIF1-MAD2L2 recruitment at DSBs, with consequent exclusion of BRCA1. Conversely, replication-associated 2-fold dilution of H4K20me2 promotes the release of the 53BP1-RIF1-MAD2L2 complex and favours the access of BRCA1. Thus, the differential H4K20 methylation status between pre-replicative and post-replicative DNA represents an intrinsic mechanism that locally ensures appropriate recruitment of the 53BP1-RIF1-MAD2L2 complex at DNA DSBs, to engage the correct DNA repair pathway

    Tryptophan depletion results in tryptophan-to-phenylalanine substitutants

    Get PDF
    Activated T cells secrete interferon-γ, which triggers intracellular tryptophan shortage by upregulating the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme1–4. Here we show that despite tryptophan depletion, in-frame protein synthesis continues across tryptophan codons. We identified tryptophan-to-phenylalanine codon reassignment (W>F) as the major event facilitating this process, and pinpointed tryptophanyl-tRNA synthetase (WARS1) as its source. We call these W>F peptides ‘substitutants’ to distinguish them from genetically encoded mutants. Using large-scale proteomics analyses, we demonstrate W>F substitutants to be highly abundant in multiple cancer types. W>F substitutants were enriched in tumours relative to matching adjacent normal tissues, and were associated with increased IDO1 expression, oncogenic signalling and the tumour-immune microenvironment. Functionally, W>F substitutants can impair protein activity, but also expand the landscape of antigens presented at the cell surface to activate T cell responses. Thus, substitutants are generated by an alternative decoding mechanism with potential effects on gene function and tumour immunoreactivity

    Ubiquitin ligase STUB1 destabilizes IFNγ-receptor complex to suppress tumor IFNγ signaling

    Get PDF
    The cytokine IFNγ differentially impacts on tumors upon immune checkpoint blockade (ICB). Despite our understanding of downstream signaling events, less is known about regulation of its receptor (IFNγ-R1). With an unbiased genome-wide CRISPR/Cas9 screen for critical regulators of IFNγ-R1 cell surface abundance, we identify STUB1 as an E3 ubiquitin ligase for IFNγ-R1 in complex with its signal-relaying kinase JAK1. STUB1 mediates ubiquitination-dependent proteasomal degradation of IFNγ-R1/JAK1 complex through IFNγ-R1K285 and JAK1K249. Conversely, STUB1 inactivation amplifies IFNγ signaling, sensitizing tumor cells to cytotoxic T cells in vitro. This is corroborated by an anticorrelation between STUB1 expression and IFNγ response in ICB-treated patients. Consistent with the context-dependent effects of IFNγ in vivo, anti-PD-1 response is increased in heterogenous tumors comprising both wildtype and STUB1-deficient cells, but not full STUB1 knockout tumors. These results uncover STUB1 as a critical regulator of IFNγ-R1, and highlight the context-dependency of STUB1-regulated IFNγ signaling for ICB outcome

    A simple and universal method for the separation and identification of phospholipid molecular species

    No full text
    One of the major challenges in lipidomics is to obtain as much information about the lipidome as possible. Here, we present a simple yet universal high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) method to separate molecular species of all phospholipid classes in one single run. The method is sensitive, robust and allows lipid profiling using full scan mass spectrometry, as well as lipid class specific scanning in positive and negative ionisation mode. This allows high-throughput processing of samples for lipidomics, even if different types of MS analysis are required. Excellent separation of isobaric and even isomeric species is achieved, and original levels of lyso-lipids can be determined without interference from lyso-lipids formed from diacyl species by source fragmentation. As examples of application of this method, more than 400 phospholipid species were identified and quantified in crude phospholipid extracts from rat liver and the parasitic helminth Schistosoma mansoni

    Collagen stimulation of platelets induces a rapid spatial response of cAMP and cGMP signaling scaffolds

    No full text
    Intracellular communication is tightly regulated in both space and time. Spatiotemporal control is important to achieve a high level of specificity in both dimensions. For instance, cAMP-dependent kinase (PKA) attains spatial resolution by interacting with distinct members of the family of A-kinase anchoring proteins (AKAPs) that position PKA at specific loci within the cell. To control the cAMP induced signal in time, distinct signal terminators such as phosphodiesterases and phosphatases are often co-localized at the AKAP scaffold. In platelets, high levels of cAMP/cGMP maintain the resting state to allow free circulation. Exposure to collagen, for instance when the vessel is damaged, triggers platelet activation through initiation of the GPVI (glycoprotein VI)/FcRg-chain forming the onset of a plethora of signaling pathways. Consequently overall intra-platelet cAMP and cGMP levels drop, however detail on how PKA, but also cGMP-dependent protein kinase (PKG) respond in relation to their localized signaling scaffolds is currently missing. To investigate this, we employed a quantitative chemical proteomics approach in activated human platelets enabling the specific enrichment of cAMP/cGMP signaling nodes. Our data reveal that within a few minutes several specific PKA and PKG signaling nodes respond significantly to the activating signal, whereas others do not, suggesting a rapid adaption of specific localized cAMP and cGMP pools to the stimulus. Using protein phosphorylation data gathered we touch upon the potential cross-talk between protein phosphorylation and signaling scaffold function as a general theme in platelet spatiotemporal control

    Proteomics of plaques and novel sources of potential biomarkers for atherosclerosis

    No full text
    Cardiovascular disease (CVD) is the leading cause of death and loss of productive life years in the world. The underlying syndrome of CVD, atherosclerosis, is a complex disease process, which involves lipid metabolism, inflammation, innate and adaptive immunity, and many other pathophysiological aspects. Furthermore, CVD is influenced by genetic as well as environmental factors. Early detection of CVD and identification of patients at risk are crucial to reduce the burden of disease and to allow personalized treatment. As established risk factors fail to accurately predict which part of the population is likely to suffer from the disease, novel biomarkers are urgently needed. Proteomics can play a significant role in identifying these biomarkers. In this review, we describe the progress made in proteome profiling of the atherosclerotic plaque and several novel sources of potential biomarkers, including circulating cells and plasma extracellular vesicles. The importance of longitudinal biobanking in biomarker discovery is highlighted and exemplified by several plaque proteins identified in the biobank study Athero-Express. Finally, we discuss the PTMs of proteins that are involved in atherosclerosis, which may become one of the foci in the ongoing quest for biomarkers through proteomics of plaque and other matrices relevant to the progression of atherosclerosis
    corecore