7 research outputs found

    Photochemical pump and NMR probe : Chemically created NMR coherence on a microsecond time scale

    Get PDF
    We report pump-probe experiments employing laser-synchronized reactions of para-hydrogen (para-H2) with transition metal dihydride complexes in conjunction with nuclear magnetic resonance (NMR) detection. The pump-probe experiment consists of a single nanosecond laser pump pulse followed, after a precisely defined delay, by a single radio frequency (rf) probe pulse. Laser irradiation eliminates H2 from either Ru(PPh3) 3(CO)(H)2 1 or cis-Ru(dppe)2(H)2 2 in C6D6 solution. Reaction with para-H2 then regenerates 1 and 2 in a well-defined nuclear spin state. The rf probe pulse produces a high-resolution, single-scan 1H NMR spectrum that can be recorded after a pump-probe delay of just 10 μs. The evolution of the spectra can be followed as the pump-probe delay is increased by micro- or millisecond increments. Due to the sensitivity of this para-H2 experiment, the resulting NMR spectra can have hydride signal-to-noise ratios exceeding 750:1. The spectra of 1 oscillate in amplitude with frequency 1101 ± 3 Hz, the chemical shift difference between the chemically inequivalent hydrides. The corresponding hydride signals of 2 oscillate with frequency 83 ± 5 Hz, which matches the difference between couplings of the hydrides to the equatorial 31P nuclei. We use the product operator formalism to show that this oscillatory behavior arises from a magnetic coherence in the plane orthogonal to the magnetic field that is generated by use of the laser pulse without rf initialization. In addition, we demonstrate how chemical shift imaging can differentiate the region of laser irradiation thereby distinguishing between thermal and photochemical reactivity within the NMR tube

    NMR Studies of Ru 3

    No full text

    Contrasting Photochemical and Thermal Catalysis by Ruthenium Arsine Complexes Revealed by Parahydrogen Enhanced NMR Spectroscopy

    No full text
    The thermal and photochemical reactivity of Ru(CO)3(dpae) (1) and Ru(CO)2(dpae)(PPh3) (2) towards H2 and diphenylacetylene is described. These reactions are monitored by NMR spectroscopy in conjunction with the parahydrogen induced polarisation (PHIP) effect, spatially resolved chemical shift imaging and the Only Parahydrogen Spectroscopy (OPSY) signal filtering method. The results are supported by DFT. The thermal and photochemical reactions of 1 with H2 proceed by CO loss and form Ru(H)2(CO)2(dpae) (3). 1 catalyses the formation of 1,2 diphenylethane, cis- and trans-stilbene, and 1,2,3,4 tetraphenylbutadiene under 325 nm irradiation at 295 K in a reaction where Ru(CO)2(dpae)(η2-CHPh=CPhCPh=CHPh) forms. When the same reaction is monitored under thermal conditions at 333 K the η2-diene complex is no longer detected but hydride containing Ru(CHPhCH2Ph)(H)(CO)2(dpae) and Ru(CO)2(dpae)(trans-stilbene) are seen. For 1, the photochemical promotion of hydrogenation through 325 nm irradiation results in an approximate 5.5-fold increase in turnover at 333 K when compared to no irradiation. In contrast, 2 reacts thermally with H2 at 295 K through PPh3 and CO loss with both Ru(H)2(CO)(dpae)(solvent) and 3 being detected. Under irradiation, CO loss dominates and two isomers of Ru(H)2(CO)(dpae)(PPh3) form. While 2 forms the same 4 organic products at 295 K and a second isomer of Ru(CHPhCH2Ph)(H)(CO)2(dpae) alongside the diene complex no photochemical promotion of hydrogenation is observed

    Contrasting photochemical and thermal reactivity of Ru(CO)(2)(PPh3)(dppe) towards hydrogen rationalised by parahydrogen NMR and DFT studies

    No full text
    The synthesis, characterisation and thermal and photochemical reactivity of Ru(CO)2(PPh3)(dppe) 1 towards hydrogen are described. Compound proved to exist in both fac (major) and mer forms in solution. Under thermal conditions, PPh3 is lost from 1 in the major reaction pathway and the known complex Ru(CO)2(dppe)(H)2 2 is formed. Photochemically, CO loss is the dominant process, leading to the alternative dihydride Ru(CO)(PPh3)(dppe)(H)2 3. The major isomer of 3, viz. 3a, contains hydride ligands that are trans to CO and trans to one of the phosphorus atoms of the dppe ligand but a second isomer, 3b, where both hydride ligands are trans to distinct phosphines, is also formed. On the NMR timescale, no interconversion of 3a and 3b was observed, although hydride site interchange is evident with activation parameters of DeltaH(double dagger) = 95 +/- 6 kJ mol(-1) and DeltaS(double dagger) = 26 +/- 17 J K(-1) mol(-1). Density functional theory confirms that the observed species are the most stable isomeric forms, and suggests that hydride exchange occurs via a transition state featuring an eta2-coordinated H2 unit
    corecore