119 research outputs found

    Photochemical pump and NMR probe : Chemically created NMR coherence on a microsecond time scale

    Get PDF
    We report pump-probe experiments employing laser-synchronized reactions of para-hydrogen (para-H2) with transition metal dihydride complexes in conjunction with nuclear magnetic resonance (NMR) detection. The pump-probe experiment consists of a single nanosecond laser pump pulse followed, after a precisely defined delay, by a single radio frequency (rf) probe pulse. Laser irradiation eliminates H2 from either Ru(PPh3) 3(CO)(H)2 1 or cis-Ru(dppe)2(H)2 2 in C6D6 solution. Reaction with para-H2 then regenerates 1 and 2 in a well-defined nuclear spin state. The rf probe pulse produces a high-resolution, single-scan 1H NMR spectrum that can be recorded after a pump-probe delay of just 10 Όs. The evolution of the spectra can be followed as the pump-probe delay is increased by micro- or millisecond increments. Due to the sensitivity of this para-H2 experiment, the resulting NMR spectra can have hydride signal-to-noise ratios exceeding 750:1. The spectra of 1 oscillate in amplitude with frequency 1101 ± 3 Hz, the chemical shift difference between the chemically inequivalent hydrides. The corresponding hydride signals of 2 oscillate with frequency 83 ± 5 Hz, which matches the difference between couplings of the hydrides to the equatorial 31P nuclei. We use the product operator formalism to show that this oscillatory behavior arises from a magnetic coherence in the plane orthogonal to the magnetic field that is generated by use of the laser pulse without rf initialization. In addition, we demonstrate how chemical shift imaging can differentiate the region of laser irradiation thereby distinguishing between thermal and photochemical reactivity within the NMR tube

    Neuro and hepatic toxicological profile of (S)-2,4-diaminobutanoic acid in embryonic, adolescent and adult zebrafish

    Get PDF
    (S)-2,4-Diaminobutanoic acid (DABA) is a noncanonical amino acid often co-produced by cyanobacteria along with ÎČ-N-methylamino-l-alanine (BMAA) in algal blooms. Although BMAA is a well-established neurotoxin, the toxicity of DABA remains unclear. As part of our development of biocompatible materials, we wish to make use of DABA as both a building block and as the end-product of enzymatically-induced depolymerization; however, if it is toxic at very low concentrations, this would not be possible. We examined the toxicity of DABA using both in vivo embryonic and adult zebrafish models. At higher sub-lethal concentrations (700 ”M), the fish demonstrated early signs of cardiotoxicity. Adolescent zebrafish were able to tolerate a higher concentration. Post-mortem histological analysis of juvenile zebrafish showed no liver or brain abnormalities associated with hepato- or neurotoxicity. Combined, these results show that DABA exhibits no overt toxicity at concentrations (100-300 ”M) within an order of magnitude of those envisioned for its application. This study further highlights the low-cost and ease of using zebrafish as an early-stage toxicological screening tool

    Tissue sparing surgery in knee reconstruction: unicompartmental (UKA), patellofemoral (PFA), UKA + PFA, bi-unicompartmental (Bi-UKA) arthroplasties

    Get PDF
    Recently mini-invasive joint replacement has become one of the hottest topics in the orthopaedic world. However, these terms have been improperly misunderstood as a “key-hole” surgery where traditional components are implanted with shorter surgical approaches, with few benefits and several possible dangers. Small implants as unicompartmental knee prostheses, patellofemoral prostheses and bi-unicompartmental knee prostheses might represent real less invasive procedures: Tissue sparing surgery, the Italian way to minimally invasive surgery (MIS). According to their experience the authors go through this real tissue sparing surgery not limited only to a small incision, but where the surgeons can respect the physiological joint biomechanics

    Strategies for the hyperpolarization of acetonitrile and related Ligands by SABRE

    Get PDF
    (Chemical Equation Presented) We report on a strategy for using SABRE (signal amplification by reversible exchange) for polarizing 1H and 13C nuclei of weakly interacting ligands which possess biologically relevant and nonaromatic motifs. We first demonstrate this via the polarization of acetonitrile, using Ir(IMes)(COD)Cl as the catalyst precursor, and confirm that the route to hyperpolarization transfer is via the J-coupling network. We extend this work to the polarization of propionitrile, benzylnitrile, benzonitrile, and trans-3-hexenedinitrile in order to assess its generality. In the 1H NMR spectrum, the signal for acetonitrile is enhanced 8-fold over its thermal counterpart when [Ir(H)2(IMes)(MeCN)3]+ is the catalyst. Upon addition of pyridine or pyridine-d5, the active catalyst changes to [Ir(H)2(IMes)- (py)2(MeCN)]+ and the resulting acetonitrile 1H signal enhancement increases to 20- and 60-fold, respectively. In 13C NMR studies, polarization transfers optimally to the quaternary 13C nucleus of MeCN while the methyl 13C is hardly polarized. Transfer to 13C is shown to occur first via the 1H - 1H coupling between the hydrides and the methyl protons and then via either the 2J or 1J couplings to the respective 13Cs, of which the 2J route is more efficient. These experimental results are rationalized through a theoretical treatment which shows excellent agreement with experiment. In the case of MeCN, longitudinal two-spin orders between pairs of 1H nuclei in the three-spin methyl group are created. Two-spin order states, between the 1H and 13C nuclei, are also created, and their existence is confirmed for Me13CN in both the 1H and 13C NMR spectra using the Only Parahydrogen Spectroscopy protocol

    Biological functions of selenium and its potential influence on Parkinson's disease

    Full text link

    Screening for hypertension in children and adolescents to prevent cardiovascular disease.

    No full text
    BACKGROUND AND OBJECTIVE: The prevalence of hypertension is increasing in children, and may persist into adulthood. This systematic review was conducted for the US Preventive Services Task Force recommendation on the effectiveness of screening asymptomatic children and adolescents for hypertension in order to prevent cardiovascular disease. METHODS: Eligible studies were identified from Medline and the Cochrane Library (through July 2012). We included trials and controlled observational studies in asymptomatic children and adolescents on the effectiveness and harms of screening and treatment, as well as accuracy of blood pressure measurement. One author extracted study characteristics and results, which were checked for accuracy by a second author. RESULTS: No studies evaluated the effects of screening for hypertension on health outcomes. Two studies of screening tests for elevated blood pressure reported moderate sensitivities (0.65, 0.72) and specificities (0.75, 0.92). Sensitivities and specificities of child hypertension for the later presence of adult hypertension (7 studies) were wide ranging (0-0.63 and 0.77-1.0, respectively), and associations between child hypertension and carotid intima media thickening and proteinuria in young adults (3 studies) were inconsistent. Seven studies reported that drug interventions effectively lowered blood pressure in adolescents over short follow-up periods. No serious treatment-related adverse effects were reported. CONCLUSIONS: There is no direct evidence that screening for hypertension in children and adolescents reduces adverse cardiovascular outcomes in adults. Additional studies are needed to improve diagnosis and risk stratification of children with elevated blood pressure and to quantify risks and benefits of interventions

    Preparing high purity initial states for nuclear magnetic resonance quantum computing.

    No full text
    Here we demonstrate how parahydrogen can be used to prepare a two-spin system in an almost pure state which is suitable for implementing nuclear magnetic resonance quantum computation. A 12 ns laser pulse is used to initiate a chemical reaction involving pure parahydrogen (the nuclear spin singlet of H2). The product, formed on the micros time scale, contains a hydrogen-derived two-spin system with an effective spin-state purity of 0.916. To achieve a comparable result by direct cooling would require an unmanageable (in the liquid state) temperature of 6.4 mK or an impractical magnetic field of 0.45 MT at room temperature. The resulting spin state has an entanglement of formation of 0.822 and cannot be described by local hidden variable models
    • 

    corecore