8 research outputs found

    Evaluation of the cerebrovascular reactivity in patients with Moyamoya Angiopathy by use of breath-hold fMRI: investigation of voxel-wise hemodynamic delay correction in comparison to [15^{15}O]water PET

    Full text link
    PURPOSE: Patients with Moyamoya Angiopathy (MMA) require hemodynamic assessment to evaluate the risk of stroke. Hemodynamic evaluation by use of breath-hold-triggered fMRI (bh-fMRI) was proposed as a readily available alternative to the diagnostic standard [15^{15}O]water PET. Recent studies suggest voxel-wise hemodynamic delay correction in hypercapnia-triggered fMRI. The aim of this study was to evaluate the effect of delay correction of bh-fMRI in patients with MMA and to compare the results with [15^{15}O]water PET. METHODS: bh-fMRI data sets of 22 patients with MMA were evaluated without and with voxel-wise delay correction within different shift ranges and compared to the corresponding [15^{15}O]water PET data sets. The effects were evaluated combined and in subgroups of data sets with most severely impaired CVR (apparent steal phenomenon), data sets with territorial time delay, and data sets with neither steal phenomenon nor delay between vascular territories. RESULTS: The study revealed a high mean cross-correlation (r = 0.79, p < 0.001) between bh-fMRI and [15^{15}O]water PET. The correlation was strongly dependent on the choice of the shift range. Overall, no shift range revealed a significantly improved correlation between bh-fMRI and [15^{15}O]water PET compared to the correlation without delay correction. Delay correction within shift ranges with positive high high cutoff revealed a lower agreement between bh-fMRI and PET overall and in all subgroups. CONCLUSION: Voxel-wise delay correction, in particular with shift ranges with high cutoff, should be used critically as it can lead to false-negative results in regions with impaired CVR and a lower correlation to the diagnostic standard [15^{15}O]water PET

    Amyloid biomarkers as predictors of conversion from mild cognitive impairment to Alzheimer’s dementia: a comparison of methods

    No full text
    Background!#!Amyloid-β (Aβ) PET is an established predictor of conversion from mild cognitive impairment (MCI) to Alzheimer's dementia (AD). We compared three PET (including an approach based on voxel-wise Cox regression) and one cerebrospinal fluid (CSF) outcome measures in their predictive power.!##!Methods!#!Datasets were retrieved from the ADNI database. In a training dataset (N = 159), voxel-wise Cox regression and principal component analyses were used to identify conversion-related regions (Cox-VOI and AD conversion-related pattern (ADCRP), respectively). In a test dataset (N = 129), the predictive value of mean normalized !##!Results!#!All four Aβ measures were significant predictors (p &amp;lt; 0.001). Prediction accuracies (Harrell's c) showed step-wise significant increases from Cox-SUVR (c = 0.71; HR = 1.84 per Z-score increase), composite SUVR (c = 0.73; HR = 2.18), CSF Aβ!##!Conclusion!#!The PES of ADCRP is the most predictive Aβ PET outcome measure, comparable to CSF A

    More extensive hypometabolism and higher mortality risk in patients with right- than left-predominant neurodegeneration of the anterior temporal lobe

    No full text
    Abstract Background Left-predominant neurodegeneration of the anterior temporal lobe (ATL) and the associated syndrome termed semantic variant primary progressive aphasia (svPPA) are well characterized. Less is known about right-predominant neurodegeneration of the ATL, which has been associated with the clinical syndrome named right temporal variant of frontotemporal dementia (rtvFTD). Here, we assessed glucose metabolism across the brain, cognitive performance, and mortality in patients with right-predominant neurodegeneration of the ATL. Methods Patients with predominant hypometabolism of the ATL on FDG PET (as a measure of neurodegeneration) were retrospectively identified and categorized into those with asymmetrical right, left, or symmetric bilateral involvement (N = 10, 17, and 8). We compared whole-brain, normalized regional glucose metabolism using SPM12, cognitive performance on the CERAD Neuropsychological Assessment Battery, and mortality risk (age- and sex-adjusted Cox proportional hazard model) between groups. Results Hypometabolism was most pronounced and extensive in patients with right-predominant neurodegeneration of the ATL. Beyond the right temporal lobe, right frontal and left temporal lobes were affected in these patients. Cognitive performance was similarly impaired in all three groups, with predominant naming and hippocampal-dependent memory deficits. Mortality risk was 6.1 times higher in patients with right- than left-predominant ATL neurodegeneration (p < 0.05). Median survival duration after PET was shortest in patients with right- and longest in patients with left-predominant ATL neurodegeneration (5.7 vs 8.3 years after examination). Discussion More extensive neurodegeneration and shorter survival duration in patients with right- than left-predominant neurodegeneration of the ATL might indicate that the former consult memory clinics at a later disease stage, when symptoms like naming and episodic memory deficits have already emerged. At the time of diagnosis, the shorter survival duration of patients with right- than left-predominant ATL neurodegeneration should be kept in mind when counseling patients and caregivers

    Prognosis of conversion of mild cognitive impairment to Alzheimer's dementia by voxel-wise Cox regression based on FDG PET data.

    No full text
    AimThe value of 18F-fluorodeoxyglucose (FDG) PET for the prognosis of conversion from mild cognitive impairment (MCI) to Alzheimer's dementia (AD) is controversial. In the present work, the identification of cerebral metabolic patterns with significant prognostic value for conversion of MCI patients to AD is investigated with voxel-based Cox regression, which in contrast to common categorical comparisons also utilizes time information.MethodsFDG PET data of 544 MCI patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were randomly split into two equally-sized datasets (training and test). Within a median follow-up duration of 47 months (95% CI: 46-48 months) 181 patients developed AD. In the training dataset, voxel-wise Cox regressions were used to identify regions associated with conversion of MCI to AD. These were compared to regions identified by a classical group comparison (analysis of covariance (ANCOVA) with statistical parametric mapping (SPM) 8) between converters and non-converters (both adjusted for apolipoprotein E (APOE) genotype, mini-mental state examination (MMSE) score, age, sex and education). In the test dataset, normalized FDG uptake within significant brain regions from voxel-wise Cox- and ANCOVA analyses (Cox- and ANCOVA- regions of interest (ROI), respectively) and clinical variables APOE status, MMSE score and education were tested in different Cox models (adjusted for age, sex) including: (1) only clinical variables, (2) only normalized FDG uptake in ANCOVA-ROI, (3) only normalized FDG uptake from Cox-ROI, (4) clinical variables plus FDG uptake in ANCOVA-ROI, (5) clinical variables plus FDG uptake from Cox-ROI.ResultsConversion-related regions with relative hypometabolism comprised parts of the temporo-parietal and posterior cingulate cortex/precuneus for voxel-wise ANCOVA, plus frontal regions for voxel-wise Cox regression (both p &lt; .01, false discovery rate (FDR) corrected). The clinical-only model (1) and the models based on normalized FDG uptake from Cox-ROI only (2) and ANCOVA-ROI only (3) all significantly predicted conversion to AD (Wald Test (WT): p &lt; .001). The clinical model (1) was significantly improved by adding imaging information in model (4) (Akaike information criterion (AIC) relative likelihood (RL) (1) vs (4): RL &lt; 0.018). There were no significant differences between models (2) and (3), as well as (4) and (5).ConclusionsVoxel-wise Cox regression identifies conversion-related patterns of cerebral glucose metabolism, but is not superior to classical group contrasts in this regard. With imaging information from both FDG PET patterns, the prediction of conversion to AD was improved

    Differential diagnosis of parkinsonism: a head-to-head comparison of FDG PET and MIBG scintigraphy

    Get PDF
    [18^{18}F]fluorodeoxyglucose (FDG) PET and [123^{123}I]metaiodobenzylguanidine (MIBG) scintigraphy may contribute to the differential diagnosis of neurodegenerative parkinsonism. To identify the superior method, we retrospectively evaluated 54 patients with suspected neurodegenerative parkinsonism, who were referred for FDG PET and MIBG scintigraphy. Two investigators visually assessed FDG PET scans using an ordinal 6-step score for disease-specific patterns of Lewy body diseases (LBD) or atypical parkinsonism (APS) and assigned the latter to the subgroups multiple system atrophy (MSA), progressive supranuclear palsy (PSP), or corticobasal syndrome. Regions-of-interest analysis on anterior planar MIBG images served to calculate the heart-to-mediastinum ratio. Movement disorder specialists blinded to imaging results established clinical follow-up diagnosis by means of guideline-derived case vignettes. Clinical follow-up (1.7 +/- 2.3 years) revealed the following diagnoses: n = 19 LBD (n = 17 Parkinson's disease [PD], n = 1 PD dementia, and n = 1 dementia with Lewy bodies), n = 31 APS (n = 28 MSA, n = 3 PSP), n = 3 non-neurodegenerative parkinsonism; n = 1 patient could not be diagnosed and was excluded. Receiver operating characteristic analyses for discriminating LBD vs. non-LBD revealed a larger area under the curve for FDG PET than for MIBG scintigraphy at statistical trend level for consensus rating (0.82 vs. 0.69, p = 0.06; significant for investigator #1: 0.83 vs. 0.69, p = 0.04). The analysis of PD vs. MSA showed a similar difference (0.82 vs. 0.69, p = 0.11; rater #1: 0.83 vs. 0.69, p = 0.07). Albeit the notable differences in diagnostic performance did not attain statistical significance, the authors consider this finding clinically relevant and suggest that FDG PET, which also allows for subgrouping of APS, should be preferred

    Combined 18F-FET PET and diffusion kurtosis MRI in posttreatment glioblastoma:differentiation of true progression from treatment-related changes

    No full text
    BackgroundRadiological differentiation of tumor progression (TPR) from treatment-related changes (TRC) in pretreated glioblastoma is crucial. This study aimed to explore the diagnostic value of diffusion kurtosis MRI combined with information derived from O-(2-[18F]-fluoroethyl)-l-tyrosine (18F-FET) PET for the differentiation of TPR from TRC in patients with pretreated glioblastoma.MethodsThirty-two patients with histomolecularly defined and pretreated glioblastoma suspected of having TPR were included in this retrospective study. Twenty-one patients were included in the TPR group, and 11 patients in the TRC group, as assessed by neuropathology or clinicoradiological follow-up. Three-dimensional (3D) regions of interest were generated based on increased 18F-FET uptake using a tumor-to-brain ratio of 1.6. Furthermore, diffusion MRI kurtosis maps were obtained from the same regions of interest using co-registered 18F-FET PET images, and advanced histogram analysis of diffusion kurtosis map parameters was applied to generated 3D regions of interest. Diagnostic accuracy was analyzed by receiver operating characteristic curve analysis and combinations of PET and MRI parameters using multivariate logistic regression.ResultsParameters derived from diffusion MRI kurtosis maps show high diagnostic accuracy, up to 88%, for differentiating between TPR and TRC. Logistic regression revealed that the highest diagnostic accuracy of 94% (area under the curve, 0.97; sensitivity, 94%; specificity, 91%) was achieved by combining the maximum tumor-to-brain ratio of 18F-FET uptake and diffusion MRI kurtosis metrics.ConclusionsThe combined use of 18F-FET PET and MRI diffusion kurtosis maps appears to be a promising approach to improve the differentiation of TPR from TRC in pretreated glioblastoma and warrants further investigation
    corecore