569 research outputs found

    Regulatory T cells

    Get PDF

    Reprint of: B Cells in Chronic Graft-versus-Host Disease

    Get PDF
    AbstractChronic graft-versus-host disease (cGVHD) continues to be a common complication of allogeneic hematopoietic stem cell transplantation. Unlike acute graft-versus-host disease, which is mediated almost entirely by donor T cells, the immune pathology of cGVHD is more complex and donor B cells have also been found to play an important role. Recent studies from several laboratories have enhanced our understanding of how donor B cells contribute to this clinical syndrome and this has led to new therapeutic opportunities. Here, Dr Sarantopoulos reviews some of the important mechanisms responsible for persistent B cell activation and loss of B cell tolerance in patients with cGVHD. Dr Blazar describes recent studies in preclinical models that have identified novel B cell–directed agents that may be effective for prevention or treatment of cGVHD. Some B cell–directed therapies have already been tested in patients with cGVHD and Dr Cutler reviews the results of these studies documenting the potential efficacy of this approach. Supported by mechanistic studies in patients and preclinical models, new B cell–directed therapies for cGVHD will now be evaluated in clinical trials

    Achievement of Tolerance Induction to Prevent Acute Graft-vs.-Host Disease

    Get PDF
    Acute graft-vs.-host disease (GVHD) limits the efficacy of allogeneic hematopoietic stem cell transplantation (allo-HSCT), a main therapy to treat various hematological disorders. Despite rapid progress in understanding GVHD pathogenesis, broad immunosuppressive agents are most often used to prevent and remain the first line of therapy to treat GVHD. Strategies enhancing immune tolerance in allo-HSCT would permit reductions in immunosuppressant use and their associated undesirable side effects. In this review, we discuss the mechanisms responsible for GVHD and advancement in strategies to achieve immune balance and tolerance thereby avoiding GVHD and its complications

    In Vivo Survival and Homeostatic Proliferation of Natural Killer Cells

    Get PDF
    While the specificity and development of natural killer (NK) cells have been intensely studied, little is known about homeostasis of the mature NK population. Here we show that mouse NK cells undergo homeostatic proliferation when transferred into NK-deficient Rag−/− γC−/− hosts. Normal NK functional activity is maintained during this process, although there are some changes in NK phenotype. Using cell sorting, we demonstrate that mature (Mac-1hi) NK cells undergo homeostatic proliferation in an NK-deficient environment, yet immature (Mac-1lo) NK cells also proliferate in such hosts. We find that mature NK cells survive but do not proliferate in hosts which possess an endogenous NK pool. However, we go on to show that mature NK survival is critically dependent on interleukin (IL)-15. Surprisingly, NK survival is also compromised after transfer of cells into IL-15Rα−/− mice, implying that IL-15 responsiveness by bystander cells is critical for NK maintenance. These data imply that, similar to T cells, homeostasis of the NK pool is much more dynamic than previously appreciated and this may be relevant to manipulation of NK cells for therapeutic purposes

    Rorc restrains the potency of ST2+ regulatory T cells in ameliorating intestinal graft-versus-host disease

    Get PDF
    Soluble stimulation-2 (ST2) is increased during graft-versus-host disease (GVHD), while Tregs that express ST2 prevent GVHD through unknown mechanisms. Transplantation of Foxp3- T cells and Tregs that were collected and sorted from different Foxp3 reporter mice indicated that in mice that developed GVHD, ST2+ Tregs were thymus derived and predominantly localized to the intestine. ST2-/- Treg transplantation was associated with reduced total intestinal Treg frequency and activation. ST2-/- versus WT intestinal Treg transcriptomes showed decreased Treg functional markers and, reciprocally, increased Rorc expression. Rorc-/- T cells transplantation enhanced the frequency and function of intestinal ST2+ Tregs and reduced GVHD through decreased gut-infiltrating soluble ST2-producing type 1 and increased IL-4/IL-10-producing type 2 T cells. Cotransfer of ST2+ Tregs sorted from Rorc-/- mice with WT CD25-depleted T cells decreased GVHD severity and mortality, increased intestinal ST2+KLRG1+ Tregs, and decreased type 1 T cells after transplantation, indicating an intrinsic mechanism. Ex vivo IL-33-stimulated Tregs (TregIL-33) expressed higher amphiregulin and displayed better immunosuppression, and adoptive transfer prevented GVHD better than control Tregs or TregIL-33 cultured with IL-23/IL-17. Amphiregulin blockade by neutralizing antibody in vivo abolished the protective effect of TregIL-33. Our data show that inverse expression of ST2 and RORγt in intestinal Tregs determines GVHD and that TregIL-33 has potential as a cellular therapy avenue for preventing GVHD

    Administration of either anti-CD40 or interleukin-12 following lethal total body irradiation induces acute lethal toxicity affecting the gut

    Get PDF
    AbstractInterleukin (IL)-12 and antibodies against CD40 have demonstrated antitumor effects in a variety of in vivo model systems. However, both agents can also mediate significant toxicities either when used following lethal TBI or when administered in combination with other agents such as IL-2. In this study, we assessed the effects of anti-CD40 monoclonal antibody (MoAb) and IL-12 in lethally irradiated mice. Acute lethal toxicity was observed following the administration of either 10 microg anti-CD40 MoAb (FGK45) or 0.5 microg of recombinant murine (rm)IL-12 that resulted in 100% mortality of all mice within 4 to 6 days. Histological evaluation revealed destruction of the normal gut architecture in both anti-CD40 MoAb- and rmIL-12-treated mice. Analysis of serum cytokine levels in the lethally irradiated mice receiving anti-CD40 MoAb demonstrated a marked increase of interferon (IFN)-gamma and IL-12 p40, whereas mice receiving rmIL-12 demonstrated a marked increase of IFN-gamma. Lethally irradiated IL-12 p40 knock-out mice were resistant to anti-CD40-induced toxicity, suggesting that the lack of IL-12 p40 with no possibility of making functional IL- 12 p70 is key for this toxic reaction. Similarly, lethally irradiated IFN-gamma knock-out mice were completely resistant to rmIL-12-induced toxicity, suggesting that IFN-gamma is a major player in IL-12-mediated toxicity. These results suggest that both anti-CD40 MoAb and rmIL-12 induce an acute fatal toxicity characterized by similar intestinal pathology and mediated in part by IFN-gamma.Biol Blood Marrow Transplant 2002;8(6):316-25

    Emerging translational strategies and challenges for enhancing regulatory T cell therapy for graft-versus-host disease

    Get PDF
    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative therapy for many types of cancer. Genetic disparities between donor and host can result in immune-mediated attack of host tissues, known as graft versus host disease (GVHD), a major cause of morbidity and mortality following HSCT. Regulatory CD4+ T cells (Tregs) are a rare cell type crucial for immune system homeostasis, limiting the activation and differentiation of effector T cells (Teff) that are self-reactive or stimulated by foreign antigen exposure. Adoptive cell therapy (ACT) with Treg has demonstrated, first in murine models and now in patients, that prophylactic Treg infusion can also suppress GVHD. While clinical trials have demonstrated Treg reduce severe GVHD occurrence, several impediments remain, including Treg variability and practical need for individualized Treg production for each patient. Additionally, there are challenges in the use of in vitro expansion techniques and in achieving in vivo Treg persistence in context of both immune suppressive drugs and in lymphoreplete patients being treated for GVHD. This review will focus on 3 main translational approaches taken to improve the efficacy of tTreg ACT in GVHD prophylaxis and development of treatment options, following HSCT: genetic modification, manipulating TCR and cytokine signaling, and Treg production protocols. In vitro expansion for Treg ACT presents a multitude of approaches for gene modification to improve efficacy, including: antigen specificity, tissue targeting, deletion of negative regulators/exhaustion markers, resistance to immunosuppressive drugs common in GVHD treatment. Such expansion is particularly important in patients without significant lymphopenia that can drive Treg expansion, enabling a favorable Treg:Teff ratio in vivo. Several potential therapeutics have also been identified that enhance tTreg stability or persistence/expansion following ACT that target specific pathways, including: DNA/histone methylation status, TCR/co-stimulation signaling, and IL-2/STAT5 signaling. Finally, this review will discuss improvements in Treg production related to tissue source, Treg subsets, therapeutic approaches to increase Treg suppression and stability during tTreg expansion, and potential for storing large numbers of Treg from a single production run to be used as an off-the-shelf infusion product capable of treating multiple recipients

    Despite high levels of expression in thymic epithelial cells, miR-181a1 and miR-181b1 are not required for thymic development.

    Get PDF
    MicroRNAs (miRNAs) have been shown to be key modulators of post-transcriptional gene silencing in many cellular processes. In previous studies designed to understand the role of miRNAs in thymic development, we globally deleted miRNA exclusively in thymic epithelial cells (TECs), which are critical in thymic selection. This resulted in the loss of stromal cells that instruct T cell lineage commitment and affect thymocyte positive selection, required for mature T cell development. Since murine miR-181 is expressed in the thymus and miR-181 deficiency disrupts thymocyte development, we first quantified and thereby demonstrated that miR181a1 and miR181b1 are expressed in purified TECs. By generating mice with TEC targeted loss of miR-181a1 and miR-181b1 expression, we observed that neither TEC cellularity nor thymocyte number nor differentiation was adversely affected. Thus, disrupted thymopoiesis in miR-181 deficient mice was not due to miR-181 loss of expression in TECs. Importantly, in mice with restricted TEC deficiency of miR-181a1 and miR-181b1, there were similar numbers of mature T cells in the periphery in regards to frequencies, differentiation, and function as compared to controls. Moreover miR-181a1 and miR-181b1 were not required for maintenance of thymus integrity over time, as thymic involution was not accelerated in gene-targeted mice. Taken together our data indicate that miR-181a1 and miR-181b1 are dispensable for TEC differentiation, their control of thymocyte development and mature T cell export to and homeostasis within the periphery
    • …
    corecore