11 research outputs found

    Optical-Path-Difference Linear Mechanism for the Panchromatic Fourier Transform Spectrometer

    Get PDF
    A document discusses a mechanism that uses flex-pivots in a parallelogram arrangement to provide frictionless motion with an unlimited lifetime. A voicecoil actuator drives the parallelogram over the required 5-cm travel. An optical position sensor provides feedback for a servo loop that keeps the velocity within 1 percent of expected value. Residual tip/tilt error is compensated for by a piezo actuator that drives the interferometer mirror. This mechanism builds on previous work that targeted ground-based measurements. The main novelty aspects include cryogenic and vacuum operation, high reliability for spaceflight, compactness of the design, optical layout compatible with the needs of an imaging FTS (i.e. wide overall field-of-view), and mirror optical coatings to cover very broad wavelength range (i.e., 0.26 to 15 m)

    Spaceborne Hybrid-FPGA System for Processing FTIR Data

    Get PDF
    Progress has been made in a continuing effort to develop a spaceborne computer system for processing readout data from a Fourier-transform infrared (FTIR) spectrometer to reduce the volume of data transmitted to Earth. The approach followed in this effort, oriented toward reducing design time and reducing the size and weight of the spectrometer electronics, has been to exploit the versatility of recently developed hybrid field-programmable gate arrays (FPGAs) to run diverse software on embedded processors while also taking advantage of the reconfigurable hardware resources of the FPGAs

    Fast, High-Precision Readout Circuit for Detector Arrays

    Get PDF
    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 11-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges

    Quantifying the Loss of Processed Natural Gas Within California's South Coast Air Basin Using Long-term Measurements of Ethane and Methane

    Get PDF
    Abstract. Methane emissions inventories for Southern California's South Coast Air Basin (SoCAB) have underestimated emissions from atmospheric measurements. To provide insight into the sources of the discrepancy, we analyze records of atmospheric trace gas total column abundances in the SoCAB starting in the late 1980s to produce annual estimates of the ethane emissions from 1989 to 2015 and methane emissions from 2007 to 2015. The first decade of measurements shows a rapid decline in ethane emissions coincident with decreasing natural gas and crude oil production in the basin. Between 2010 and 2015, however, ethane emissions have grown gradually from about 13 ± 5 to about 23 ± 3 Gg yr−1, despite the steady production of natural gas and oil over that time period. The methane emissions record begins with 1 year of measurements in 2007 and continuous measurements from 2011 to 2016 and shows little trend over time, with an average emission rate of 413 ± 86 Gg yr−1. Since 2012, ethane to methane ratios in the natural gas withdrawn from a storage facility within the SoCAB have been increasing by 0.62 ± 0.05 % yr−1, consistent with the ratios measured in the delivered gas. Our atmospheric measurements also show an increase in these ratios but with a slope of 0.36 ± 0.08 % yr−1, or 58 ± 13 % of the slope calculated from the withdrawn gas. From this, we infer that more than half of the excess methane in the SoCAB between 2012 and 2015 is attributable to losses from the natural gas infrastructure

    Preflight Spectral Calibration of the Orbiting Carbon Observatory 2

    No full text
    This paper describes the preflight spectral calibration methods and results for the Orbiting Carbon Observatory 2 (OCO-2), following the approach developed for the first OCO. The instrument line shape (ILS) function and dispersion parameters were determined through laser-based spectroscopic measurements, and then further optimized by comparing solar spectra recorded simultaneously on the ground by the OCO-2 flight instrument and a collocated high-resolution Fourier transform spectrometer (FTS). The resulting ILS profiles and dispersion parameters, when applied to the FTS solar data, showed agreement between the spectra recorded by the spectrometers and FTS to approximately 0.2% RMS, satisfying the preflight spectral calibration accuracy requirement of <0.25% RMS. Specific changes to the OCO-2 instrument and calibration process, compared to the original OCO, include stray-light protection; improved laser setup; increased spectral sampling; enhanced data screening, and incremental improvements in the ILS, dispersion, and FTS optimization analyses
    corecore