516 research outputs found

    Counter Directed Energy Warfare (CDEW)

    Get PDF
    NPS NRP Executive SummaryCounter Directed Energy Warfare (CDEW)Office of Naval Research (ONR)This research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Circular Semiclassical String Solutions on AdS_5 x S_5

    Full text link
    We discuss two semiclassical string solutions on AdS_5\times S_5. In the first case, we consider a multiwrapped circular string pulsating in the radial direction of AdS_5, but fixed to a point on the S_5. We compute the energy of this motion as a function of a large quantum number nn. We identify the string level with mnmn, where mm is the number of string wrappings. Using the AdS/CFT correspondence, we argue that the bare dimension of the corresponding gauge invariant operator is 2n2n and that its anomalous dimension scales as \lambda^{1/4}\sqrt{mn}, for large nn. Next we consider a multiwrapped circular string pulsating about two opposite poles of the S5S_5. We compute the energy of this motion as a function of a large quantum number, nn where again the string level is given as mnmn. We find that the dimension of the corresponding operator is 2n(1+f(m^2\lambda/(2n)^2)), where f(x) is computible as a series about x=0 and where it is analytic. We also compare this result to the BMN result for large J operators.Comment: 15 pages, LaTeX;v3 minor error fixed;v4 reference added, sec 4 clarified and expanded slightly; v5 corrected a term in 4.12 and 4.1

    The Bethe-Ansatz for N=4 Super Yang-Mills

    Get PDF
    We derive the one loop mixing matrix for anomalous dimensions in N=4 Super Yang-Mills. We show that this matrix can be identified with the Hamiltonian of an integrable SO(6) spin chain with vector sites. We then use the Bethe ansatz to find a recipe for computing anomalous dimensions for a wide range of operators. We give exact results for BMN operators with two impurities and results up to and including first order 1/J corrections for BMN operators with many impurities. We then use a result of Reshetikhin's to find the exact one-loop anomalous dimension for an SO(6) singlet in the limit of large bare dimension. We also show that this last anomalous dimension is proportional to the square root of the string level in the weak coupling limit.Comment: 35 pages, 3 figures, LaTeX; v2 references added, typos corrected, \Lambda fixed; v3 expanded discussion of higher loops in conclusion, matches published versio

    Asymptotes in SU(2) Recoupling Theory: Wigner Matrices, 3j3j Symbols, and Character Localization

    Full text link
    In this paper we employ a novel technique combining the Euler Maclaurin formula with the saddle point approximation method to obtain the asymptotic behavior (in the limit of large representation index JJ) of generic Wigner matrix elements DMMJ(g)D^{J}_{MM'}(g). We use this result to derive asymptotic formulae for the character χJ(g)\chi^J(g) of an SU(2) group element and for Wigner's 3j3j symbol. Surprisingly, given that we perform five successive layers of approximations, the asymptotic formula we obtain for χJ(g)\chi^J(g) is in fact exact. This result provides a non trivial example of a Duistermaat-Heckman like localization property for discrete sums.Comment: 36 pages, 3 figure

    Stringing Spins and Spinning Strings

    Full text link
    We apply recently developed integrable spin chain and dilatation operator techniques in order to compute the planar one-loop anomalous dimensions for certain operators containing a large number of scalar fields in N =4 Super Yang-Mills. The first set of operators, belonging to the SO(6) representations [J,L-2J,J], interpolate smoothly between the BMN case of two impurities (J=2) and the extreme case where the number of impurities equals half the total number of fields (J=L/2). The result for this particular [J,0,J] operator is smaller than the anomalous dimension derived by Frolov and Tseytlin [hep-th/0304255] for a semiclassical string configuration which is the dual of a gauge invariant operator in the same representation. We then identify a second set of operators which also belong to [J,L-2J,J] representations, but which do not have a BMN limit. In this case the anomalous dimension of the [J,0,J] operator does match the Frolov-Tseytlin prediction. We also show that the fluctuation spectra for this [J,0,J] operator is consistent with the string prediction.Comment: 27 pages, 4 figures, LaTex; v2 reference added, typos fixe

    THE ROLE OF INTERDEPENDENCE IN THE MICRO-FOUNDATIONS OF ORGANIZATION DESIGN: TASK, GOAL, AND KNOWLEDGE INTERDEPENDENCE

    Get PDF
    Interdependence is a core concept in organization design, yet one that has remained consistently understudied. Current notions of interdependence remain rooted in seminal works, produced at a time when managers’ near-perfect understanding of the task at hand drove the organization design process. In this context, task interdependence was rightly assumed to be exogenously determined by characteristics of the work and the technology. We no longer live in that world, yet our view of interdependence has remained exceedingly task-centric and our treatment of interdependence overly deterministic. As organizations face increasingly unpredictable workstreams and workers co-design the organization alongside managers, our field requires a more comprehensive toolbox that incorporates aspects of agent-based interdependence. In this paper, we synthesize research in organization design, organizational behavior, and other related literatures to examine three types of interdependence that characterize organizations’ workflows: task, goal, and knowledge interdependence. We offer clear definitions for each construct, analyze how each arises endogenously in the design process, explore their interrelations, and pose questions to guide future research

    Sharing data from molecular simulations

    Get PDF
    Given the need for modern researchers to produce open, reproducible scientific output, the lack of standards and best practices for sharing data and workflows used to produce and analyze molecular dynamics (MD) simulations has become an important issue in the field. There are now multiple well-established packages to perform molecular dynamics simulations, often highly tuned for exploiting specific classes of hardware, each with strong communities surrounding them, but with very limited interoperability/transferability options. Thus, the choice of the software package often dictates the workflow for both simulation production and analysis. The level of detail in documenting the workflows and analysis code varies greatly in published work, hindering reproducibility of the reported results and the ability for other researchers to build on these studies. An increasing number of researchers are motivated to make their data available, but many challenges remain in order to effectively share and reuse simulation data. To discuss these and other issues related to best practices in the field in general, we organized a workshop in November 2018 (https://bioexcel.eu/events/workshop-on-sharing-data-from-molecular-simulations/). Here, we present a brief overview of this workshop and topics discussed. We hope this effort will spark further conversation in the MD community to pave the way toward more open, interoperable, and reproducible outputs coming from research studies using MD simulations
    corecore