102 research outputs found

    Associations between Cognition, Gender and Monocyte Activation among HIV Infected Individuals in Nigeria.

    Get PDF
    The potential role of gender in the occurrence of HIV-related neurocognitive impairment (NCI) and associations with markers of HIV-related immune activity has not been previously examined. In this study 149 antiretroviral-naΓ―ve seropositive subjects in Nigeria (SP, 92 women and 57 men) and 58 seronegative (SN, 38 women and 20 men) were administered neuropsychological testing that assessed 7 ability domains. From the neuropsychological test scores was calculated a global deficit score (GDS), a measure of overall NCI. Percentages of circulating monocytes and plasma HIV RNA, soluble CD163 and soluble CD14 levels were also assessed. HIV SP women were found to be younger, more educated and had higher CD4+ T cell counts and borderline higher viral load measures than SP men. On the neuropsychological testing, SP women were more impaired in speed of information processing and verbal fluency and had a higher mean GDS than SN women. Compared to SP men, SP women were also more impaired in speed of information processing and verbal fluency as well as on tests of learning and memory. Numbers of circulating monocytes and plasma sCD14 and sCD163 levels were significantly higher for all SP versus all SN individuals and were also higher for SP women and for SP men versus their SN counterparts. Among SP women, soluble CD14 levels were slightly higher than for SP men, and SP women had higher viral load measurements and were more likely to have detectable virus than SP men. Higher sCD14 levels among SP women correlated with more severe global impairment, and higher viral load measurements correlated with higher monocyte numbers and sCD14 and sCD14 levels, associations that were not observed for SP men. These studies suggest that the risk of developing NCI differ for HIV infected women and men in Nigeria and, for women, may be linked to effects from higher plasma levels of HIV driving activation of circulating monocytes

    HIV-1 Epidemic in the Caribbean Is Dominated by Subtype B

    Get PDF
    The molecular epidemiology of HIV-1 in the Caribbean has been described using partial genome sequencing; subtype B is the most common subtype in multiple countries. To expand our knowledge of this, nearly full genome amplification, sequencing and analysis was conducted.Virion RNA from sera collected in Haiti, Dominican Republic, Jamaica and Trinidad and Tobago were reverse transcribed, PCR amplified, sequenced and phylogenetically analyzed. Nearly full genomes were completed for 15 strains; partial pol was done for 67 strains. All but one of the 67 strains analyzed in pol were subtype B; the exception was a unique recombinant of subtypes B and C collected in the Dominican Republic. Of the nearly full genomes of 14 strains that were subtype B in pol, all were subtype B from one end of the genome to the other and not inter-subtype recombinants. Surprisingly, the Caribbean subtype B strains clustered significantly with each other and separate from subtype B from other parts of the pandemic.The more complete analysis of HIV-1 from 4 Caribbean countries confirms previous research using partial genome analysis that the predominant subtype in circulation was subtype B. The Caribbean strains are phylogenetically distinct from other subtype B strains although the biological meaning of this finding is unclear

    Significantly Longer Envelope V2 Loops Are Characteristic of Heterosexually Transmitted Subtype B HIV-1 in Trinidad

    Get PDF
    In Trinidad and the wider Caribbean, subtype B Human Immunodeficiency Virus-type 1 (HIV-1B) overwhelmingly accounts for HIV infection among heterosexuals; this contrasts with the association of HIV-1B with homosexual transmission and injecting drug use globally. The HIV envelope contains genetic determinants of cell tropism and evasion from immune attack. In this study we investigate the genetic properties of the env V1-C4 of HIV-1B soon after transmission to Trinidadian heterosexuals. This will reveal distinctive genetic features of the strains that cause the HIV-1B epidemic in Trinidad and generate insights to better understand their properties.Quasispecies sampling was performed on the env V1-C4 of HIV-1B strains soon after transmission to heterosexual Trinidadians in a cohort of seroconverters. Phylogenetic relationships were determined for these quasispecies and the length and number of asparagine (N) linked glycosylation sites (NLGS) in their variable loops compared to that for HIV-1B globally. Signature amino acids within the constant domains of the env V1-C4 were identified for heterosexually transmitted HIV-1B from Trinidad relative to HIV-1B globally. HIV-1B obtained from Trinidadian heterosexuals soon after seroconversion had significantly longer V2 loops with one more glycosylation site, shorter V3 loops and no significant difference in V1 or V4 when compared to HIV-1B obtained soon after seroconversion from infected individuals in the rest of the world. HIV-1B soon after seroconversion and during chronic infection of Trinidadians was not significantly different, suggesting that distinctly long V2 loops are characteristic of HIV-1B in Trinidad. A threonine deletion at position 319 (T319-) along with the substitutions R315K and S440R were found to be distinctly associated with HIV-1B from Trinidad compared to HIV-1B globally.This finding of distinctive genetic features that are characteristic of HIV-1B strains from Trinidad is consistent with the Trinidad epidemic being established by a founder strain or closely related founder strains of HIV-1B

    Protocol for Nearly Full-Length Sequencing of HIV-1 RNA from Plasma

    Get PDF
    Nearly full-length genome sequencing of HIV-1 using peripheral blood mononuclear cells (PBMC) DNA as a template for PCR is now a relatively routine laboratory procedure. However, this has not been the case when using virion RNA as the template and this has made full genome analysis of circulating viruses difficult. Therefore, a well-developed procedure for sequencing of full-length HIV-1 RNA directly from plasma was needed. Plasma from U.S. donors representing a range of viral loads (VL) was used to develop the assay. RNA was extracted from plasma and reverse-transcribed. Two or three overlapping regions were PCR amplified to cover the entire viral genome and sequenced for verification. The success of the procedure was sensitive to VL but was routinely successful for VL greater than 105 and the rate declined in proportion to the VL. While the two-amplicon strategy had an advantage of increasing the possibility of amplifying a single species of HIV-1, the three-amplicon strategy was more successful in amplifying samples with low viral loads. This protocol provides a useful tool for molecular analysis to understand the HIV epidemic and pathogenesis, as well as diagnosis, therapy and future vaccine strategies

    Safety and Immunogenicity of an HIV-1 Gag DNA Vaccine with or without IL-12 and/or IL-15 Plasmid Cytokine Adjuvant in Healthy, HIV-1 Uninfected Adults

    Get PDF
    DNA vaccines are a promising approach to vaccination since they circumvent the problem of vector-induced immunity. DNA plasmid cytokine adjuvants have been shown to augment immune responses in small animals and in macaques.We performed two first in human HIV vaccine trials in the US, Brazil and Thailand of an RNA-optimized truncated HIV-1 gag gene (p37) DNA derived from strain HXB2 administered either alone or in combination with dose-escalation of IL-12 or IL-15 plasmid cytokine adjuvants. Vaccinations with both the HIV immunogen and cytokine adjuvant were generally well-tolerated and no significant vaccine-related adverse events were identified. A small number of subjects developed asymptomatic low titer antibodies to IL-12 or IL-15. Cellular immunogenicity following 3 and 4 vaccinations was poor, with response rates to gag of 4.9%/8.7% among vaccinees receiving gag DNA alone, 0%/11.5% among those receiving gag DNA+IL-15, and no responders among those receiving DNA+high dose (1500 ug) IL-12 DNA. However, after three doses, 44.4% (4/9) of vaccinees receiving gag DNA and intermediate dose (500 ug) of IL-12 DNA demonstrated a detectable cellular immune response.This combination of HIV gag DNA with plasmid cytokine adjuvants was well tolerated. There were minimal responses to HIV gag DNA alone, and no apparent augmentation with either IL-12 or IL-15 plasmid cytokine adjuvants. Despite the promise of DNA vaccines, newer formulations or methods of delivery will be required to increase their immunogenicity.Clinicaltrials.gov NCT00115960 NCT00111605

    Using Genomic Sequencing for Classical Genetics in E. coli K12

    Get PDF
    We here develop computational methods to facilitate use of 454 whole genome shotgun sequencing to identify mutations in Escherichia coli K12. We had Roche sequence eight related strains derived as spontaneous mutants in a background without a whole genome sequence. They provided difference tables based on assembling each genome to reference strain E. coli MG1655 (NC_000913). Due to the evolutionary distance to MG1655, these contained a large number of both false negatives and positives. By manual analysis of the dataset, we detected all the known mutations (24 at nine locations) and identified and genetically confirmed new mutations necessary and sufficient for the phenotypes we had selected in four strains. We then had Roche assemble contigs de novo, which we further assembled to full-length pseudomolecules based on synteny with MG1655. This hybrid method facilitated detection of insertion mutations and allowed annotation from MG1655. After removing one genome with less than the optimal 20- to 30-fold sequence coverage, we identified 544 putative polymorphisms that included all of the known and selected mutations apart from insertions. Finally, we detected seven new mutations in a total of only 41 candidates by comparing single genomes to composite data for the remaining six and using a ranking system to penalize homopolymer sequencing and misassembly errors. An additional benefit of the analysis is a table of differences between MG1655 and a physiologically robust E. coli wild-type strain NCM3722. Both projects were greatly facilitated by use of comparative genomics tools in the CoGe software package (http://genomevolution.org/)

    TraR, a Homolog of a RNAP Secondary Channel Interactor, Modulates Transcription

    Get PDF
    Recent structural and biochemical studies have identified a novel control mechanism of gene expression mediated through the secondary channel of RNA Polymerase (RNAP) during transcription initiation. Specifically, the small nucleotide ppGpp, along with DksA, a RNAP secondary channel interacting factor, modifies the kinetics of transcription initiation, resulting in, among other events, down-regulation of ribosomal RNA synthesis and up-regulation of several amino acid biosynthetic and transport genes during nutritional stress. Until now, this mode of regulation of RNAP was primarily associated with ppGpp. Here, we identify TraR, a DksA homolog that mimics ppGpp/DksA effects on RNAP. First, expression of TraR compensates for dksA transcriptional repression and activation activities in vivo. Second, mutagenesis of a conserved amino acid of TraR known to be critical for DksA function abolishes its activity, implying both structural and functional similarity to DksA. Third, unlike DksA, TraR does not require ppGpp for repression of the rrnB P1 promoter in vivo and in vitro or activation of amino acid biosynthesis/transport genes in vivo. Implications for DksA/ppGpp mechanism and roles of TraR in horizontal gene transfer and virulence are discussed
    • …
    corecore