109 research outputs found

    Human T‐cell lymphotrophic virus in solid‐organ transplant recipients: Guidelines from the American society of transplantation infectious diseases community of practice

    Full text link
    These updated guidelines from the Infectious Diseases Community of Practice of the American Society of Transplantation review the diagnosis, prevention, and management of Human T‐cell lymphotrophic virus 1 (HTLV)‐1 in the pre‐ and post‐transplant period. HTLV‐1 is an oncogenic human retrovirus rare in North America but endemic in the Caribbean and parts of Africa, South America, Asia, and Oceania. While most infected persons do not develop disease, <5% will develop adult T‐cell leukemia/lymphoma or neurological disease. No proven antiviral treatment for established HTLV‐1 infection is available. The effect of immunosuppression on the development of HTLV‐1‐associated disease in asymptomatically infected recipients is not well characterized, and HTLV‐1‐infected individuals should be counseled that immunosuppression may increase the risk of developing HTLV‐1‐associated disease and they should be monitored post‐transplant for HTLV‐1‐associated disease. Currently approved screening assays do not distinguish between HTLV‐1 and HTLV‐2, and routine screening of deceased donors without risk factors in low seroprevalence areas is likely to result in significant organ wastage and is not recommended. Targeted screening of donors with risk factors for HTLV‐1 infection and of living donors (as time is available to perform confirmatory tests) is reasonable.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151899/1/ctr13575.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151899/2/ctr13575_am.pd

    Human T-lymphotropic virus type 1 (HTLV-1) prevalence and quantitative detection of DNA proviral load in individuals with indeterminate/positive serological results

    Get PDF
    BACKGROUND: HTLV-1 infection is currently restricted to endemic areas. To define the prevalence of HTLV-1 infection in patients living in Italy, we first carried out a retrospective serological analysis in a group of people originating from African countries referred to our hospital from January 2003 to February 2005. We subsequently applied a real time PCR on peripheral blood mononuclear cells from subjects with positive or indeterminate serological results. METHODS: All the sera were first analysed by serological methods (ELISA and/or Western Blotting) and then the peripheral blood mononuclear cells from subjects with positive or inconclusive serological results were analyzed for the presence of proviral DNA by a sensitive SYBR Green real time PCR. In addition, twenty HTLV-I ELISA negative samples were assayed by real time PCR approach as negative controls. RESULTS: Serological results disclosed serum reactivity by ELISA (absorbance values equal or greater than the cut-off value) in 9 out of 3408 individuals attending the Sexually Transmitted Diseases Clinic and/or Oncology Department, and 2 out 534 blood donors enrolled as a control population. Irrespective of positive or inconclusive serological results, all these subjects were analyzed for the presence of proviral DNA in peripheral blood mononuclear cells by SYBR real time PCR. A clear-cut positive result for the presence of HTLV-1 DNA was obtained in two subjects from endemic areas. CONCLUSION: SYBR real time PCR cut short inconclusive serological results. This rapid and inexpensive assay showed an excellent linear dynamic range, specificity and reproducibility readily revealing and quantifying the presence of virus in PBMCs. Our results highlight the need to monitor the presence of HTLV-1 in countries which have seen a large influx of immigrants in recent years. Epidemiological surveillance and correct diagnosis are recommended to verify the prevalence and incidence of a new undesirable phenomenon

    TraR, a Homolog of a RNAP Secondary Channel Interactor, Modulates Transcription

    Get PDF
    Recent structural and biochemical studies have identified a novel control mechanism of gene expression mediated through the secondary channel of RNA Polymerase (RNAP) during transcription initiation. Specifically, the small nucleotide ppGpp, along with DksA, a RNAP secondary channel interacting factor, modifies the kinetics of transcription initiation, resulting in, among other events, down-regulation of ribosomal RNA synthesis and up-regulation of several amino acid biosynthetic and transport genes during nutritional stress. Until now, this mode of regulation of RNAP was primarily associated with ppGpp. Here, we identify TraR, a DksA homolog that mimics ppGpp/DksA effects on RNAP. First, expression of TraR compensates for dksA transcriptional repression and activation activities in vivo. Second, mutagenesis of a conserved amino acid of TraR known to be critical for DksA function abolishes its activity, implying both structural and functional similarity to DksA. Third, unlike DksA, TraR does not require ppGpp for repression of the rrnB P1 promoter in vivo and in vitro or activation of amino acid biosynthesis/transport genes in vivo. Implications for DksA/ppGpp mechanism and roles of TraR in horizontal gene transfer and virulence are discussed

    Co-Orientation of Replication and Transcription Preserves Genome Integrity

    Get PDF
    In many bacteria, there is a genome-wide bias towards co-orientation of replication and transcription, with essential and/or highly-expressed genes further enriched co-directionally. We previously found that reversing this bias in the bacterium Bacillus subtilis slows replication elongation, and we proposed that this effect contributes to the evolutionary pressure selecting the transcription-replication co-orientation bias. This selection might have been based purely on selection for speedy replication; alternatively, the slowed replication might actually represent an average of individual replication-disruption events, each of which is counter-selected independently because genome integrity is selected. To differentiate these possibilities and define the precise forces driving this aspect of genome organization, we generated new strains with inversions either over ∌1/4 of the chromosome or at ribosomal RNA (rRNA) operons. Applying mathematical analysis to genomic microarray snapshots, we found that replication rates vary dramatically within the inverted genome. Replication is moderately impeded throughout the inverted region, which results in a small but significant competitive disadvantage in minimal medium. Importantly, replication is strongly obstructed at inverted rRNA loci in rich medium. This obstruction results in disruption of DNA replication, activation of DNA damage responses, loss of genome integrity, and cell death. Our results strongly suggest that preservation of genome integrity drives the evolution of co-orientation of replication and transcription, a conserved feature of genome organization
    • 

    corecore