2,382 research outputs found
Cryogenic zero-gravity prototype vent system
Design, fabrication, and tests of prototype cryogenic zero-gravity heat exchanger vent syste
Protocol: optimised electrophyiological analysis of intact guard cells from arabidopsis
Genetic resources available for Arabidopsis thaliana make this species particularly attractive as a model for molecular genetic studies of guard cell homeostasis, transport and signalling, but this facility is not matched by accessible tools for quantitative analysis of transport in the intact cell. We have developed a reliable set of procedures for voltage clamp analysis of guard cells from Arabidopsis leaves. These procedures greatly simplify electrophysiological recordings, extending the duration of measurements and scope for analysis of the predominant K+ and anion channels of intact stomatal guard cells to that achieved previously in work with Vicia and tobacco guard cells
Capillary acquisition devices for high-performance vehicles: Executive summary
Technology areas critical to the development of cryogenic capillary devices were studied. Passive cooling of capillary devices was investigated with an analytical and experimental study of wicking flow. Capillary device refilling with settled fluid was studied using an analytical and experimental program that resulted in successful correlation of a versatile computer program with test data. The program was used to predict Centaur D-1S LO2 and LH2 start basket refilling. Comparisons were made between the baseline Centaur D-1S propellant feed system and feed system alternatives including systems using capillary devices. The preferred concepts from the Centaur D-1S study were examined for APOTV and POTV vehicles for delivery and round trip transfer of payloads between LEO and GEO. Mission profiles were determined to provide propellant usage timelines and the payload partials were defined
Self-consistent Green's functions calculation of the nucleon mean-free path
The extension of Green's functions techniques to the complex energy plane
provides access to fully dressed quasi-particle properties from a microscopic
perspective. Using self-consistent ladder self-energies, we find both spectra
and lifetimes of such quasi-particles in nuclear matter. With a consistent
choice of the group velocity, the nucleon mean-free path can be computed. Our
results indicate that, for energies above 50 MeV at densities close to
saturation, a nucleon has a mean-free path of 4 to 5 femtometers.Comment: 5 pages, 4 figures. Minor changes, bibliography corrected. Accepted
version in Phys. Rev. Let
Decoherence assisting a measurement-driven quantum evolution process
We study the problem of driving an unknown initial mixed quantum state onto a
known pure state without using unitary transformations. This can be achieved,
in an efficient manner, with the help of sequential measurements on at least
two unbiased bases. However here we found that, when the system is affected by
a decoherence mechanism, only one observable is required in order to achieve
the same goal. In this way the decoherence can assist the process. We show
that, depending on the sort of decoherence, the process can converge faster or
slower than the method implemented by means of two complementary observables.Comment: Four pages, three figures included ([email protected]
Coupling a single atomic quantum bit to a high finesse optical cavity
The quadrupole S -- D optical transition of a single trapped
Ca ion, well suited for encoding a quantum bit of information, is
coherently coupled to the standing wave field of a high finesse cavity. The
coupling is verified by observing the ion's response to both spatial and
temporal variations of the intracavity field. We also achieve deterministic
coupling of the cavity mode to the ion's vibrational state by selectively
exciting vibrational state-changing transitions and by controlling the position
of the ion in the standing wave field with nanometer-precision
Conductance peaks in open quantum dots
We present a simple measure of the conductance fluctuations in open ballistic
chaotic quantum dots, extending the number of maxima method originally proposed
for the statistical analysis of compound nuclear reactions. The average number
of extreme points (maxima and minima) in the dimensionless conductance, , as
a function of an arbitrary external parameter , is directly related to the
autocorrelation function of . The parameter can be associated to an
applied gate voltage causing shape deformation in quantum dot, an external
magnetic field, the Fermi energy, etc.. The average density of maxima is found
to be , where is a universal constant
and is the conductance autocorrelation length, which is system specific.
The analysis of does not require large statistic samples,
providing a quite amenable way to access information about parametric
correlations, such as .Comment: 5 pages, 5 figures, accepted to be published - Physical Review
Letter
Efimov states and their Fano resonances in a neutron-rich nucleus
Asymmetric resonances in elastic n+C scattering are attributed to
Efimov states of such neutron-rich nuclei, that is, three-body bound states of
the n+n+C system when none of the pairs is bound or some of them only
weakly bound. By fitting to the general resonance shape described by Fano, we
extract resonance position, width, and the "Fano profile index". While Efimov
states have been discussed extensively in many areas of physics, there is only
one very recent experimental observation in trimers of cesium atoms. The
conjunction that we present of the Efimov and Fano phenomena may lead to
experimental realization in nuclei.Comment: 4 double-column pages, 3 figure
Experiments towards quantum information with trapped Calcium ions
Ground state cooling and coherent manipulation of ions in an rf-(Paul) trap
is the prerequisite for quantum information experiments with trapped ions. With
resolved sideband cooling on the optical S1/2 - D5/2 quadrupole transition we
have cooled one and two 40Ca+ ions to the ground state of vibration with up to
99.9% probability. With a novel cooling scheme utilizing electromagnetically
induced transparency on the S1/2 - P1/2 manifold we have achieved simultaneous
ground state cooling of two motional sidebands 1.7 MHz apart. Starting from the
motional ground state we have demonstrated coherent quantum state manipulation
on the S1/2 - D5/2 quadrupole transition at 729 nm. Up to 30 Rabi oscillations
within 1.4 ms have been observed in the motional ground state and in the n=1
Fock state. In the linear quadrupole rf-trap with 700 kHz trap frequency along
the symmetry axis (2 MHz in radial direction) the minimum ion spacing is more
than 5 micron for up to 4 ions. We are able to cool two ions to the ground
state in the trap and individually address the ions with laser pulses through a
special optical addressing channel.Comment: Proceedings of the ICAP 2000, Firenz
- …