1,930 research outputs found

    Centaur Propellant Thermal Conditioning Study

    Get PDF
    A wicking investigation revealed that passive thermal conditioning was feasible and provided considerable weight advantage over active systems using throttled vent fluid in a Centaur D-1s launch vehicle. Experimental wicking correlations were obtained using empirical revisions to the analytical flow model. Thermal subcoolers were evaluated parametrically as a function of tank pressure and NPSP. Results showed that the RL10 category I engine was the best candidate for boost pump replacement and the option showing the lowest weight penalty employed passively cooled acquisition devices, thermal subcoolers, dry ducts between burns and pumping of subcooler coolant back into the tank. A mixing correlation was identified for sizing the thermodynamic vent system mixer. Worst case mixing requirements were determined by surveying Centaur D-1T, D-1S, IUS, and space tug vehicles. Vent system sizing was based upon worst case requirements. Thermodynamic vent system/mixer weights were determined for each vehicle

    Measurement of the hyperfine structure of the S1/2-D5/2 transition in 43Ca+

    Get PDF
    The hyperfine structure of the S1/2-D5/2 quadrupole transition at 729 nm in 43Ca+ has been investigated by laser spectroscopy using a single trapped 43Ca+ ion. We determine the hyperfine structure constants of the metastable level as A=-3.8931(2) MHz and B=-4.241(4) MHz. The isotope shift of the transition with respect to 40Ca+ was measured to be 4134.713(5) MHz. We demonstrate the existence of transitions that become independent of the first-order Zeeman shift at non-zero low magnetic fields. These transitions might be better suited for building a frequency standard than the well-known 'clock transitions' between m=0 levels at zero magnetic field.Comment: corrected for sign errors in the hyperfine constants. No corrections to were made to the data analysi

    Endothelial cell density in relation to morphology

    Get PDF
    Corneal endothelium of 121 normal corneas was studied with the clinical specular microscope, and the relationship between cell density, cell morphology, and age was examined. Our observations indicate a decrease in cell density with age in homomegethous endothelium but no such correlation in a polymegethous endothelium

    Geometric phase gate on an optical transition for ion trap quantum computation

    Full text link
    We propose a geometric phase gate of two ion qubits that are encoded in two levels linked by an optical dipole-forbidden transition. Compared to hyperfine geometric phase gates mediated by electric dipole transitions, the gate has many interesting properties, such as very low spontaneous emission rates, applicability to magnetic field insensitive states, and use of a co-propagating laser beam geometry. We estimate that current technology allows for infidelities of around 10−4^{-4}.Comment: 4 pages, 2 figure

    Anomalous thermoelectric power of Mg1-xAlxB2 system with x = 0.0 to 1.0

    Full text link
    Thermoelectric power, S(T) of the Mg1-xAlxB2 system has been measured for x = 0.0, 0.1, 0.2, 0.4, 0.6, 0.8 and 1.0. XRD, resistivity and magnetization measurements are also presented. It has been found that the thermoelectric power is positive for x = 0.4 and is negative for x = 0.6 over the entire temperature range studied up to 300 K. The thermoelectric power of x = 0.4 samples vanishes discontinuously below a certain temperature, implying existence of superconductivity. In general, the magnitude of the thermoelectric power increases with temperature up to a certain temperature, and then it starts to decrease towards zero base line. In order to explain the observed behavior of the thermoelectric power, we have used a model in which both diffusion and phonon drag processes are combined by using a phenomenological interpolation between the low and high temperature behaviors of the thermoelectric power. The considered model provides an excellent fit to the observed data. It is further found that Al doping enhances the Debye temperature.Comment: 19 pages Text + Figs. suggestions/comments([email protected]

    Shot-noise limited monitoring and phase locking of the motion of a single trapped ion

    Full text link
    We perform high-resolution real-time read-out of the motion of a single trapped and laser-cooled Ba ion. By using an interferometric setup we demonstrate shot-noise limited measurement of thermal oscillations with resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Due to the spectral narrowing in phase-locked mode, the coherent ion oscillation is measured with resolution of about 0.3 times the standard quantum limit

    Evolution of Nuclear Shell Structure due to the Pion Exchange Potential

    Full text link
    The evolution of nuclear shell structure is investigated for the first time within density-dependent relativistic Hartree-Fock theory and the role of π\pi-exchange potential is studied in detail. The energy differences between the neutron orbits \Lrb{\nu1h_{9/2},\nu 1i_{13/2}} in the N=82 isotones and between the proton ones \Lrb{\pi1g_{7/2},\pi1h_{11/2}} in the Z=50 isotopes are extracted as a function of neutron excess N−ZN-Z. A kink around Z=58Z = 58 for the N=82 isotones is found as an effect resulting from pion correlations. It is shown that the inclusion of π\pi-coupling plays a central role to provide realistic isospin dependence of the energy differences. In particular, the tensor part of the π\pi-coupling has an important effect on the characteristic isospin dependence observed in recent experiments.Comment: 4 pages and 4 figure

    Diquark Bose-Einstein condensation

    Full text link
    Bose-Einstein condensation (BEC) of composite diquarks in quark matter (the color superconductor phase) is discussed using the quasi-chemical equilibrium theory at a relatively low density region near the deconfinement phase transition, where dynamical quark-pair fluctuations are assumed to be described as bosonic degrees of freedom (diquarks). A general formulation is given for the diquark formation and particle-antiparticle pair-creation processes in the relativistic flamework, and some interesting properties are shown, which are characteristic for the relativistic many-body system. Behaviors of transition temperature and phase diagram of the quark-diquark matter are generally presented in model parameter space, and their asymptotic behaviors are also discussed. As an application to the color superconductivity, the transition temperatures and the quark and diquark density profiles are calculated in case with constituent/current quarks, where the diquark is in bound/resonant state. We obtained TC∌60−80T_C \sim 60-80 MeV for constituent quarks and TC∌130T_C \sim 130 MeV for current quarks at a moderate density (ρb∌3ρ0\rho_b \sim 3 \rho_0). The method is also developed to include interdiquark interactions into the quasi-chemical equilibrium theory within a mean-field approximation, and it is found that a possible repulsive diquark-diquark interaction lowers the transition temperature by nearly 50%.Comment: 21 pages, 23 figure

    Quantum Chaotic Scattering in Microwave Resonators

    Full text link
    In a frequency range where a microwave resonator simulates a chaotic quantum billiard, we have measured moduli and phases of reflection and transmission amplitudes in the regimes of both isolated and of weakly overlapping resonances and for resonators with and without time-reversal invariance. Statistical measures for S-matrix fluctuations were determined from the data and compared with extant and/or newly derived theoretical results obtained from the random-matrix approach to quantum chaotic scattering. The latter contained a small number of fit parameters. The large data sets taken made it possible to test the theoretical expressions with unprecedented accuracy. The theory is confirmed by both, a goodness-of-fit-test and the agreement of predicted values for those statistical measures that were not used for the fits, with the data

    Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps

    Full text link
    We investigate single ions of 40Ca+^{40}Ca^+ in Paul traps for quantum information processing. Superpositions of the S1/2_{1/2} electronic ground state and the metastable D5/2_{5/2} state are used to implement a qubit. Laser light on the S1/2↔_{1/2} \leftrightarrow D5/2_{5/2} transition is used for the manipulation of the ion's quantum state. We apply sideband cooling to the ion and reach the ground state of vibration with up to 99.9% probability. Starting from this Fock state ∣n=0>|n=0>, we demonstrate coherent quantum state manipulation. A large number of Rabi oscillations and a ms-coherence time is observed. Motional heating is measured to be as low as one vibrational quantum in 190 ms. We also report on ground state cooling of two ions.Comment: 12 pages, 6 figures. submitted to Journal of Modern Optics, Special Issue on Quantum Optics: Kuehtai 200
    • 

    corecore