2,470 research outputs found

    Effective-range approach and scaling laws for electromagnetic strength in neutron-halo nuclei

    Get PDF
    We study low-lying multipole strength in neutron-halo nuclei. The strength depends only on a few low-energy constants: the neutron separation energy, the asymptotic normalization coefficient of the bound state wave function, and the scattering length that contains the information on the interaction in the continuum. The shape of the transition probability shows a characteristic dependence on few scaling parameters and the angular momenta. The total E1 strength is related to the root-mean-square radius of the neutron wave function in the ground state and shows corresponding scaling properties. We apply our approach to the E1 strength distribution of 11Be.Comment: 4 pages, 1 figure (modified), additional table, extended discussion of example, accepted for publication in Phys. Rev. Let

    Pure single photons from a trapped atom source

    Full text link
    Single atoms or atom-like emitters are the purest source of on-demand single photons, they are intrinsically incapable of multi-photon emission. To demonstrate this degree of purity we have realized a tunable, on-demand source of single photons using a single ion trapped at the common focus of high numerical aperture lenses. Our trapped-ion source produces single-photon pulses at a rate of 200 kHz with g2(0)=(1.9±0.2)×103^2(0) = (1.9 \pm 0.2) \times 10^{-3}, without any background subtraction. The corresponding residual background is accounted for exclusively by detector dark counts. We further characterize the performance of our source by measuring the violation of a non-Gaussian state witness and show that its output corresponds to ideal attenuated single photons. Combined with current efforts to enhance collection efficiency from single emitters, our results suggest that single trapped ions are not only ideal stationary qubits for quantum information processing, but promising sources of light for scalable optical quantum networks.Comment: 7 pages plus one page supplementary materia
    corecore