325 research outputs found

    Amplitude, Latency, and Peak Velocity in Accommodation and Disaccommodation Dynamics.

    Get PDF
    The aim of this work was to ascertain whether there are differences in amplitude, latency, and peak velocity of accommodation and disaccommodation responses when different analysis strategies are used to compute them, such as fitting different functions to the responses or for smoothing them prior to computing the parameters. Accommodation and disaccommodation responses from four subjects to pulse changes in demand were recorded by means of aberrometry. Three different strategies were followed to analyze such responses: fitting an exponential function to the experimental data; fitting a Boltzmann sigmoid function to the data; and smoothing the data. Amplitude, latency, and peak velocity of the responses were extracted. Significant differences were found between the peak velocity in accommodation computed by fitting an exponential function and smoothing the experimental data (mean difference 2.36 D/s). Regarding disaccommodation, significant differences were found between latency and peak velocity, calculated with the two same strategies (mean difference of 0.15 s and -3.56 D/s, resp.). The strategy used to analyze accommodation and disaccommodation responses seems to affect the parameters that describe accommodation and disaccommodation dynamics. These results highlight the importance of choosing the most adequate analysis strategy in each individual to obtain the parameters that characterize accommodation and disaccommodation dynamics

    Effect of Phenylephrine on the Accommodative System.

    Get PDF
    Accommodation is controlled by the action of the ciliary muscle and mediated primarily by parasympathetic input through postganglionic fibers that originate from neurons in the ciliary and pterygopalatine ganglia. During accommodation the pupil constricts to increase the depth of focus of the eye and improve retinal image quality. Researchers have traditionally faced the challenge of measuring the accommodative properties of the eye through a small pupil and thus have relied on pharmacological agents to dilate the pupil. Achieving pupil dilation (mydriasis) without affecting the accommodative ability of the eye (cycloplegia) could be useful in many clinical and research contexts. Phenylephrine hydrochloride (PHCl) is a sympathomimetic agent that is used clinically to dilate the pupil. Nevertheless, first investigations suggested some loss of functional accommodation in the human eye after PHCl instillation. Subsequent studies, based on different measurement procedures, obtained contradictory conclusions, causing therefore an unexpected controversy that has been spread almost to the present days. This manuscript reviews and summarizes the main research studies that have been performed to analyze the effect of PHCl on the accommodative system and provides clear conclusions that could help clinicians know the real effects of PHCl on the accommodative system of the human eye

    Seeking legitimacy through CSR: Institutional Pressures and Corporate Responses of Multinationals in Sri Lanka

    Get PDF
    Arguably, the corporate social responsibility (CSR) practices of multinational enterprises (MNEs) are influenced by a wide range of both internal and external factors. Perhaps most critical among the exogenous forces operating on MNEs are those exerted by state and other key institutional actors in host countries. Crucially, academic research conducted to date offers little data about how MNEs use their CSR activities to strategically manage their relationship with those actors in order to gain legitimisation advantages in host countries. This paper addresses that gap by exploring interactions between external institutional pressures and firm-level CSR activities, which take the form of community initiatives, to examine how MNEs develop their legitimacy-seeking policies and practices. In focusing on a developing country, Sri Lanka, this paper provides valuable insights into how MNEs instrumentally utilise community initiatives in a country where relationship-building with governmental and other powerful non-governmental actors can be vitally important for the long-term viability of the business. Drawing on neo-institutional theory and CSR literature, this paper examines and contributes to the embryonic but emerging debate about the instrumental and political implications of CSR. The evidence presented and discussed here reveals the extent to which, and the reasons why, MNEs engage in complex legitimacy-seeking relationships with Sri Lankan institutions

    Regeneration of the Exocrine Pancreas Is Delayed in Telomere-Dysfunctional Mice

    Get PDF
    INTRODUCTION: Telomere shortening is a cell-intrinsic mechanism that limits cell proliferation by induction of DNA damage responses resulting either in apoptosis or cellular senescence. Shortening of telomeres has been shown to occur during human aging and in chronic diseases that accelerate cell turnover, such as chronic hepatitis. Telomere shortening can limit organ homeostasis and regeneration in response to injury. Whether the same holds true for pancreas regeneration in response to injury is not known. METHODS: In the present study, pancreatic regeneration after acute cerulein-induced pancreatitis was studied in late generation telomerase knockout mice with short telomeres compared to telomerase wild-type mice with long telomeres. RESULTS: Late generation telomerase knockout mice exhibited impaired exocrine pancreatic regeneration after acute pancreatitis as seen by persistence of metaplastic acinar cells and markedly reduced proliferation. The expression levels of p53 and p21 were not significantly increased in regenerating pancreas of late generation telomerase knockout mice compared to wild-type mice. CONCLUSION: Our results indicate that pancreatic regeneration is limited in the context of telomere dysfunction without evidence for p53 checkpoint activation

    Localization of telomeres and telomere-associated proteins in telomerase-negative Saccharomyces cerevisiae

    Get PDF
    Cells lacking telomerase cannot maintain their telomeres and undergo a telomere erosion phase leading to senescence and crisis in which most cells become nonviable. On rare occasions survivors emerge from these cultures that maintain their telomeres in alternative ways. The movement of five marked telomeres in Saccharomyces cerevisiae was followed in wild-type cells and through erosion, senescence/crisis and eventual survival in telomerase-negative (est2::HYG) yeast cells. It was found that during erosion, movements of telomeres in est2::HYG cells were indistinguishable from wild-type telomere movements. At senescence/crisis, however, most cells were in G2 arrest and the nucleus and telomeres traversed back and forth across the bud neck, presumably until cell death. Type I survivors, using subtelomeric Y′ amplification for telomere maintenance, continued to show this aberrant telomere movement. However, Type II survivors, maintaining telomeres by a sudden elongation of the telomere repeats, became indistinguishable from wild-type cells, consistent with growth properties of the two types of survivors. When telomere-associated proteins Sir2p, Sir3p and Rap1p were tagged, the same general trend was seen—Type I survivors retained the senescence/crisis state of protein localization, while Type II survivors were restored to wild type

    Natural and anthropogenic changes to mangrove distributions in the Pioneer River Estuary (QLD, Australia)

    Get PDF
    We analyzed a time series of aerial photographs and Landsat satellite imagery of the Pioneer River Estuary (near Mackay, Queensland, Australia) to document both natural and anthropogenic changes in the area of mangroves available to filter river runoff between 1948 and 2002. Over 54 years, there was a net loss of 137 ha (22%) of tidal mangroves during four successive periods that were characterized by different driving mechanisms: (1) little net change (1948– 1962); (2) net gain from rapid mangrove expansion (1962–1972); (3) net loss from clearing and tidal isolation (1972–1991); and (4) net loss from a severe species-specific dieback affecting over 50% of remaining mangrove cover (1991–2002). Manual digitization of aerial photographs was accurate for mapping changes in the boundaries of mangrove distributions, but this technique underestimated the total loss due to dieback. Regions of mangrove dieback were identified and mapped more accurately and efficiently after applying the Normalized Difference Vegetation Index (NDVI) to Landsat Thematic Mapper satellite imagery, and then monitoring changes to the index over time. These remote sensing techniques to map and monitor mangrove changes are important for identifying habitat degradation, both spatially and temporally, in order to prioritize restoration for management of estuarine and adjacent marine ecosystems

    Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells

    Get PDF
    Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase—some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR−/− and Eμmyc+mTR−/−) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR−/− tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR−/− cells that had short telomeres. Using mouse mTR+/− and human hTERT+/− primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length

    Renal dysfunction is associated with shorter telomere length in heart failure

    Get PDF
    Renal dysfunction is a frequent comorbidity associated with high mortality in patients with chronic heart failure (CHF). The intrinsic biological age might affect the ability of the kidney to cope with the challenging environment caused by CHF. We explored the association between leukocyte telomere length, a marker for biological age, and renal function in patients with CHF. Telomere length was determined by a real-time quantitative polymerase chain reaction in 866 CHF patients. Renal function was estimated with the simplified Modification of Diet in Renal Disease equation. The median age was 74 (interquartile range 64-79) years, 61% male, left ventricular ejection fraction of 30 (23-44)%, and the estimated glomerular filtration rate was 53 (40-68) ml/min/1.73 m(2). Telomere length was associated with renal function (correlation coefficient 0.123, P <0.001). This relationship remained significant after adjustment for age, gender, age of CHF onset (standardized-beta 0.091, P = 0.007). Also additionally adjusting for the severity of CHF and baseline differences did not change our findings. The association between shorter leukocyte telomere length and reduced renal function in heart failure suggests that intrinsic biological aging affects the ability of the kidney to cope with the systemic changes evoked by heart failure

    A Non-Canonical Function of Zebrafish Telomerase Reverse Transcriptase Is Required for Developmental Hematopoiesis

    Get PDF
    Although it is clear that telomerase expression is crucial for the maintenance of telomere homeostasis, there is increasing evidence that the TERT protein can have physiological roles that are independent of this central function. To further examine the role of telomerase during vertebrate development, the zebrafish telomerase reverse transcriptase (zTERT) was functionally characterized. Upon zTERT knockdown, zebrafish embryos show reduced telomerase activity and are viable, but develop pancytopenia resulting from aberrant hematopoiesis. The blood cell counts in TERT-depleted zebrafish embryos are markedly decreased and hematopoietic cell differentiation is impaired, whereas other somatic lineages remain morphologically unaffected. Although both primitive and definitive hematopoiesis is disrupted by zTERT knockdown, the telomere lengths are not significantly altered throughout early development. Induced p53 deficiency, as well as overexpression of the anti-apoptotic proteins Bcl-2 and E1B-19K, significantly relieves the decreased blood cells numbers caused by zTERT knockdown, but not the impaired blood cell differentiation. Surprisingly, only the reverse transcriptase motifs of zTERT are crucial, but the telomerase RNA-binding domain of zTERT is not required, for rescuing complete hematopoiesis. This is therefore the first demonstration of a non-canonical catalytic activity of TERT, which is different from “authentic” telomerase activity, is required for during vertebrate hematopoiesis. On the other hand, zTERT deficiency induced a defect in hematopoiesis through a potent and specific effect on the gene expression of key regulators in the absence of telomere dysfunction. These results suggest that TERT non-canonically functions in hematopoietic cell differentiation and survival in vertebrates, independently of its role in telomere homeostasis. The data also provide insights into a non-canonical pathway by which TERT functions to modulate specification of hematopoietic stem/progenitor cells during vertebrate development. (276 words
    corecore