82 research outputs found

    Testing for Differences in Gaussian Graphical Models: Applications to Brain Connectivity

    Get PDF
    Functional brain networks are well described and estimated from data with Gaussian Graphical Models (GGMs), e.g. using sparse inverse covariance estimators. Comparing functional connectivity of subjects in two populations calls for comparing these estimated GGMs. Our goal is to identify differences in GGMs known to have similar structure. We characterize the uncertainty of differences with confidence intervals obtained using a parametric distribution on parameters of a sparse estimator. Sparse penalties enable statistical guarantees and interpretable models even in high-dimensional and low-sample settings. Characterizing the distributions of sparse models is inherently challenging as the penalties produce a biased estimator. Recent work invokes the sparsity assumptions to effectively remove the bias from a sparse estimator such as the lasso. These distributions can be used to give confidence intervals on edges in GGMs, and by extension their differences. However, in the case of comparing GGMs, these estimators do not make use of any assumed joint structure among the GGMs. Inspired by priors from brain functional connectivity we derive the distribution of parameter differences under a joint penalty when parameters are known to be sparse in the difference. This leads us to introduce the debiased multi-task fused lasso, whose distribution can be characterized in an efficient manner. We then show how the debiased lasso and multi-task fused lasso can be used to obtain confidence intervals on edge differences in GGMs. We validate the techniques proposed on a set of synthetic examples as well as neuro-imaging dataset created for the study of autism

    The Lov\'asz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks

    Full text link
    The Jaccard index, also referred to as the intersection-over-union score, is commonly employed in the evaluation of image segmentation results given its perceptual qualities, scale invariance - which lends appropriate relevance to small objects, and appropriate counting of false negatives, in comparison to per-pixel losses. We present a method for direct optimization of the mean intersection-over-union loss in neural networks, in the context of semantic image segmentation, based on the convex Lov\'asz extension of submodular losses. The loss is shown to perform better with respect to the Jaccard index measure than the traditionally used cross-entropy loss. We show quantitative and qualitative differences between optimizing the Jaccard index per image versus optimizing the Jaccard index taken over an entire dataset. We evaluate the impact of our method in a semantic segmentation pipeline and show substantially improved intersection-over-union segmentation scores on the Pascal VOC and Cityscapes datasets using state-of-the-art deep learning segmentation architectures.Comment: Accepted as a conference paper at CVPR 201

    Greedy Bayesian Posterior Approximation with Deep Ensembles

    Full text link
    Ensembles of independently trained neural networks are a state-of-the-art approach to estimate predictive uncertainty in Deep Learning, and can be interpreted as an approximation of the posterior distribution via a mixture of delta functions. The training of ensembles relies on non-convexity of the loss landscape and random initialization of their individual members, making the resulting posterior approximation uncontrolled. This paper proposes a novel and principled method to tackle this limitation, minimizing an ff-divergence between the true posterior and a kernel density estimator in a function space. We analyze this objective from a combinatorial point of view, and show that it is submodular with respect to mixture components for any ff. Subsequently, we consider the problem of ensemble construction, and from the marginal gain of the total objective, we derive a novel diversity term for training ensembles greedily. The performance of our approach is demonstrated on computer vision out-of-distribution detection benchmarks in a range of architectures trained on multiple datasets. The source code of our method is publicly available at https://github.com/MIPT-Oulu/greedy_ensembles_training

    Dense Transformer based Enhanced Coding Network for Unsupervised Metal Artifact Reduction

    Full text link
    CT images corrupted by metal artifacts have serious negative effects on clinical diagnosis. Considering the difficulty of collecting paired data with ground truth in clinical settings, unsupervised methods for metal artifact reduction are of high interest. However, it is difficult for previous unsupervised methods to retain structural information from CT images while handling the non-local characteristics of metal artifacts. To address these challenges, we proposed a novel Dense Transformer based Enhanced Coding Network (DTEC-Net) for unsupervised metal artifact reduction. Specifically, we introduce a Hierarchical Disentangling Encoder, supported by the high-order dense process, and transformer to obtain densely encoded sequences with long-range correspondence. Then, we present a second-order disentanglement method to improve the dense sequence's decoding process. Extensive experiments and model discussions illustrate DTEC-Net's effectiveness, which outperforms the previous state-of-the-art methods on a benchmark dataset, and greatly reduces metal artifacts while restoring richer texture details

    Jaccard Metric Losses: Optimizing the Jaccard Index with Soft Labels

    Full text link
    IoU losses are surrogates that directly optimize the Jaccard index. In semantic segmentation, leveraging IoU losses as part of the loss function is shown to perform better with respect to the Jaccard index measure than optimizing pixel-wise losses such as the cross-entropy loss alone. The most notable IoU losses are the soft Jaccard loss and the Lovasz-Softmax loss. However, these losses are incompatible with soft labels which are ubiquitous in machine learning. In this paper, we propose Jaccard metric losses (JMLs), which are identical to the soft Jaccard loss in a standard setting with hard labels, but are compatible with soft labels. With JMLs, we study two of the most popular use cases of soft labels: label smoothing and knowledge distillation. With a variety of architectures, our experiments show significant improvements over the cross-entropy loss on three semantic segmentation datasets (Cityscapes, PASCAL VOC and DeepGlobe Land), and our simple approach outperforms state-of-the-art knowledge distillation methods by a large margin. Code is available at: \href{https://github.com/zifuwanggg/JDTLosses}{https://github.com/zifuwanggg/JDTLosses}.Comment: Submitted to ICML2023. Code is available at https://github.com/zifuwanggg/JDTLosse
    corecore