1,575 research outputs found
Modern compact star observations and the quark matter EoS
A hybrid equation of state for dense matter is presented that satisfies
phenomenological constraints from modern compact star observations which
indicate high maximum masses of about 2 M_sun and large radii of R> 12 km. The
corresponding isospin symmetric equation of state is consistent with flow data
analyses of heavy-ion collisions. The transition from nuclear to two-flavor
color superconducting quark matter at n approximately 0.55 fm^{-3} is almost a
crossover.Comment: 2 pages, 2 figures; Proceedings of the Erice School on 'Radioactive
Beams, Nuclear Dynamics and Astrophysics' to be published in 'Prog. Part.
Nucl. Phys.
A formula for charmonium suppression
In this work a formula for charmonium suppression obtained by Matsui in 1989
is analytically generalized for the case of complex c-cbar potential described
by a 3-dimensional and isotropic time-dependent harmonic oscillator (THO). It
is suggested that under certain conditions the formula can be applied to
describe J/\psi suppression in heavy-ion collisions at CERN-SPS, RHIC, and LHC
with the advantage of analytical tractability.Comment: 4 pages, no figures, to appear in Phys. At. Nucl., vol. 7
Extensions and further applications of the nonlocal Polyakov--Nambu--Jona-Lasinio model
The nonlocal Polyakov-loop-extended Nambu--Jona-Lasinio (PNJL) model is
further improved by including momentum-dependent wave-function renormalization
in the quark quasiparticle propagator. Both two- and three-flavor versions of
this improved PNJL model are discussed, the latter with inclusion of the
(nonlocal) 't Hooft-Kobayashi-Maskawa determinant interaction in order to
account for the axial U(1) anomaly. Thermodynamics and phases are investigated
and compared with recent lattice-QCD results.Comment: 28 pages, 11 figures, 4 tables; minor changes compared to v1;
extended conclusion
Neutrino emissivities and bulk viscosity in neutral two-flavor quark matter
We study thermodynamic and transport properties for the isotropic
color-spin-locking (iso-CSL) phase of two-flavor superconducting quark matter
under compact star constraints within a NJL-type chiral quark model. Chiral
symmetry breaking and the phase transition to superconducting quark matter
leads to a density dependent change of quark masses, chemical potentials and
diquark gap. A self-consistent treatment of these physical quantities
influences on the microscopic calculations of transport properties. We present
results for the iso-CSL direct URCA emissivities and bulk viscosities, which
fulfill the constraints on quark matter derived from cooling and rotational
evolution of compact stars. We compare our results with the phenomenologically
successful, but yet heuristic 2SC+X phase. We show that the microscopically
founded iso-CSL phase can replace the purely phenomenological 2SC+X phase in
modern simulations of the cooling evolution for compact stars with color
superconducting quark matter interior.Comment: 15 pages, 6 figures, references added, text improve
1-2-3-flavor color superconductivity in compact stars
We suggest a scenario where the three light quark flavors are sequentially
deconfined under increasing pressure in cold asymmetric nuclear matter, e.g.,
as in neutron stars. The basis for our analysis is a chiral quark matter model
of Nambu--Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single
flavor (CSL) and spin-0 two/three flavor (2SC/CFL) channels, and a
Dirac-Brueckner Hartree-Fock (DBHF) approach in the nuclear matter sector. We
find that nucleon dissociation sets in at about the saturation density, n_0,
when the down-quark Fermi sea is populated (d-quark dripline) due to the flavor
asymmetry imposed by beta-equilibrium and charge neutrality. At about 3n_0
u-quarks appear forming a two-flavor color superconducting (2SC) phase, while
the s-quark Fermi sea is populated only at still higher baryon density. The
hybrid star sequence has a maximum mass of 2.1 M_sun. Two- and three-flavor
quark matter phases are found only in gravitationally unstable hybrid star
solutions.Comment: 4 pages, 2 figures, to appear in the proceedings of Quark Matter
2008: 20th International Conference on Ultra-Relativistic Nucleus Nucleus
Collisions (QM 2008), Jaipur, India, 4-10 Feb 200
Color neutrality effects in the phase diagram of the PNJL model
The phase diagram of a two-flavor Polyakov loop Nambu-Jona-Lasinio model is
analyzed imposing the constraint of color charge neutrality. Main effects of
this constraint are a shrinking of the chiral symmetry breaking (chiSB) domain
in the T-mu plane, a shift of the critical point to lower temperatures and a
coexistence of chiSB and two-flavor superconducting phases. The effects can be
understood in view of the presence of a nonvanishing color chemical potential
mu_8, which is necessary to compensate the color charge density rho_8 induced
by the nonvanishing Polyakov-loop mean field phi_3.Comment: 8 pages, 4 figures, figures added, minor text modification
Modern compact star observations and the quark matter equation of state
We present a hybrid equation of state (EoS) for dense matter that satisfies
phenomenological constraints from modern compact star (CS) observations which
indicate high maximum masses (M = 2 M_sun) and large radii (R> 12 km). The
corresponding isospin symmetric EoS is consistent with flow data analyses of
heavy-ion collisions and a deconfinement transition at approx. 0.55 fm^{-3}.
The quark matter phase is described by a 3-flavor Nambu--Jona-Lasinio model
that accounts for scalar diquark condensation and vector meson interactions
while the nuclear matter phase is obtained within the
Dirac-Brueckner-Hartree-Fock (DBHF) approach using the Bonn-A potential. We
demonstrate that both pure neutron stars and neutron stars with quark matter
cores (QCSs) are consistent with modern CS observations. Hybrid star
configurations with a CFL quark core are unstable.Comment: 16 pages, 4 figures; published version, important note added in proo
- …