13 research outputs found

    Unleashing meiotic crossovers in crops

    No full text
    Improved plant varieties are important in our attempts to face the challenges of a growing human population and limited planet resources. Plant breeding relies on meiotic crossovers to combine favourable alleles into elite varieties1. However, meiotic crossovers are relatively rare, typically one to three per chromosome2, limiting the efficiency of the breeding process and related activities such as genetic mapping. Several genes that limit meiotic recombination were identified in the model species Arabidopsis thaliana2. Mutation of these genes in Arabidopsis induces a large increase in crossover frequency. However, it remained to be demonstrated whether crossovers could also be increased in crop species hybrids. We explored the effects of mutating the orthologues of FANCM3, RECQ44 or FIGL15 on recombination in three distant crop species, rice (Oryza sativa), pea (Pisum sativum) and tomato (Solanum lycopersicum). We found that the single recq4 mutation increases crossovers about three-fold in these crops, suggesting that manipulating RECQ4 may be a universal tool for increasing recombination in plants. Enhanced recombination could be used with other state-of-the-art technologies such as genomic selection, genome editing or speed breeding6 to enhance the pace and efficiency of plant improvement.Université Fédérale de Toulous

    Varietal variation and chromosome behaviour during meiosis in Solanum tuberosum

    No full text
    Naturally occurring autopolyploid species such as the autotetraploid potato Solanum tuberosum face a variety of challenges during meiosis. These include proper pairing, recombination and correct segregation of multiple homologous chromosomes, which can form complex multivalent configurations at metaphase I, and in turn alter allelic segregation ratios through double reduction. Here, we present a reference map of meiotic stages in diploid and tetraploid S. tuberosum using fluorescence in situ hybridisation (FISH) to differentiate individual meiotic chromosomes 1 and 2. A diploid-like behaviour at metaphase I involving bivalent configurations was predominant in all three tetraploid varieties. The crossover frequency per bivalent was significantly reduced in the tetraploids compared with a diploid variety, which likely indicates meiotic adaptation to the autotetraploid state. Nevertheless, bivalents were accompanied by a substantial frequency of multivalents, which varied by variety and by chromosome (7-48%). We identified possible sites of synaptic partner switching, leading to multivalent formation, and found potential defects in the polymerisation and/or maintenance of the synaptonemal complex in tetraploids. These findings demonstrate the rise of S. tuberosum as a model for autotetraploid meiotic recombination research and highlight constraints on meiotic chromosome configurations and chiasma frequencies as an important feature of an evolved autotetraploid meiosis.Funding provided by: Biotechnology and Biological Sciences Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000268Award Number: BB/N008952/1This dataset is collected from fluoresence in situ hybridisation (FISH) analysis of pollen mother cells at the metaphase I stage of meiosis, from four varieties of Solanum tuberosum. 5S and 45S rDNA probes were used to identify chromosomes 1 and 2 and to conservatively score chiasma on short and long chromosome arms based on the observed configurations and localisation of FISH signals. The four varieties analysed include three autotetraploids (Sante, Maris Peer and Cara) and one diploid (Scapa)

    Manipulation of crossover frequency and distribution for plant breeding

    No full text

    Effects of Various Antihypertensive Drugs on the Function of Osteoblast.

    No full text
    corecore