74 research outputs found
A population of luminous accreting black holes with hidden mergers
Major galaxy mergers are thought to play an important part in fuelling the
growth of supermassive black holes. However, observational support for this
hypothesis is mixed, with some studies showing a correlation between merging
galaxies and luminous quasars and others showing no such association. Recent
observations have shown that a black hole is likely to become heavily obscured
behind merger-driven gas and dust, even in the early stages of the merger, when
the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations
further suggest that such obscuration and black-hole accretion peaks in the
final merger stage, when the two galactic nuclei are closely separated (less
than 3 kiloparsecs). Resolving this final stage requires a combination of
high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray
observations to detect highly obscured sources. However, large numbers of
obscured luminous accreting supermassive black holes have been recently
detected nearby (distances below 250 megaparsecs) in X-ray observations. Here
we report high-resolution infrared observations of hard-X-ray-selected black
holes and the discovery of obscured nuclear mergers, the parent populations of
supermassive-black-hole mergers. We find that obscured luminous black holes
(bolometric luminosity higher than 2x10^44 ergs per second) show a significant
(P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a
sample of inactive galaxies with matching stellar masses and star formation
rates (1.1 per cent), in agreement with theoretical predictions. Using
hydrodynamic simulations, we confirm that the excess of nuclear mergers is
indeed strongest for gas-rich major-merger hosts of obscured luminous black
holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the
authors' version of the wor
Multifunctionality of silver closo-boranes
Silver compounds share a rich history in technical applications including photography, catalysis, photocatalysis, cloud seeding and as antimicrobial agents. Here we present a class of silver compounds (Ag2B10H10 and Ag2B12H12) that are semiconductors with a bandgap at 2.3?eV in the green visible light spectrum. The silver boranes have extremely high ion conductivity and dynamic-anion facilitated Ag(+) migration is suggested based on the structural model. The ion conductivity is enhanced more than two orders of magnitude at room temperature (up to 3.2?mS?cm(-1)) by substitution with AgI to form new compounds. Furthermore, the closo-boranes show extremely fast silver nano-filament growth when excited by electrons during transmission electron microscope investigations. Ag nano-filaments can also be reabsorbed back into Ag2B12H12. These interesting properties demonstrate the multifunctionality of silver closo-boranes and open up avenues in a wide range of fields including photocatalysis, solid state ionics and nano-wire production
Galaxies appear simpler than expected
Galaxies are complex systems the evolution of which apparently results from
the interplay of dynamics, star formation, chemical enrichment, and feedback
from supernova explosions and supermassive black holes. The hierarchical theory
of galaxy formation holds that galaxies are assembled from smaller pieces,
through numerous mergers of cold dark matter. The properties of an individual
galaxy should be controlled by six independent parameters including mass,
angular-momentum, baryon-fraction, age and size, as well as by the accidents of
its recent haphazard merger history. Here we report that a sample of galaxies
that were first detected through their neutral hydrogen radio-frequency
emission, and are thus free of optical selection effects, shows five
independent correlations among six independent observables, despite having a
wide range of properties. This implies that the structure of these galaxies
must be controlled by a single parameter, although we cannot identify this
parameter from our dataset. Such a degree of organisation appears to be at odds
with hierarchical galaxy formation, a central tenet of the cold dark matter
paradigm in cosmology.Comment: 26 pages, 14 figure
Heterogeneity in Health Insurance Coverage Among US Latino Adults
We sought to determine the differences in observed and unobserved factors affecting rates of health insurance coverage between US Latino adults and US Latino adults of Mexican ancestry. Our hypothesis was that Latinos of Mexican ancestry have worse health insurance coverage than their non-Mexican Latino counterparts.
The National Health Interview Survey (NHIS) database from 1999–2007 consists of 33,847 Latinos. We compared Latinos of Mexican ancestry to non-Mexican Latinos in the initial descriptive analysis of health insurance coverage. Disparities in health insurance coverage across Latino categories were later analyzed in a multivariable logistic regression framework, which adjusts for confounding variables. The Blinder-Oaxaca technique was applied to parse out differences in health insurance coverage into observed and unobserved components.
US Latinos of Mexican ancestry consistently had lower rates of health insurance coverage than did US non-Mexican Latinos. Approximately 65% of these disparities can be attributed to differences in observed characteristics of the Mexican ancestry population in the US (e.g., age, sex, income, employment status, education, citizenship, language and health condition). The remaining disparities may be attributed to unobserved heterogeneity that may include unobserved employment-related information (e.g., type of employment and firm size) and behavioral and idiosyncratic factors (e.g., risk aversion and cultural differences).
This study confirmed that Latinos of Mexican ancestry were less likely to have health insurance than were non-Mexican Latinos. Moreover, while differences in observed socioeconomic and demographic factors accounted for most of these disparities, the share of unobserved heterogeneity accounted for 35% of these differences
An Outbreak of Dengue Fever in St. Croix (US Virgin Islands), 2005
BACKGROUND: Periodic outbreaks of dengue fever occur in the United States Virgin Islands. In June 2005, an outbreak of dengue virus (DENV) serotype-2 with cases of dengue hemorrhagic fever (DHF) was detected in St. Croix, US Virgin Islands. The objective of this report is to describe this outbreak of DENV-2 and the findings of a case-control study examining risk factors for DHF. METHODOLOGY/PRINCIPAL FINDINGS: This is the largest dengue outbreak ever recorded in St. Croix, with 331 suspected dengue cases reported island-wide during 2005 (62.2 cases/10,000 population); 54% were hospitalized, 21% had at least one hemorrhagic manifestation, 28% had thrombocytopenia, 5% had DHF and 1 patient died. Eighty-nine laboratory-positive hospitalized patients were identified. Of these, there were 15 (17%) who met the WHO criteria for DHF (cases) and 74 (83%) who did not (controls). The only variable significantly associated with DHF on bivariate or multivariable analysis was age, with an adjusted odds ratio (95% confidence interval) of 1.033 (1.003,1.064). CONCLUSIONS/SIGNIFICANCE: During this outbreak of DENV-2, a high proportion of cases developed DHF and increasing age was significantly associated with DHF
Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor
Cholesterol influences ion-channel function, distribution and clustering in the membrane, endocytosis, and exocytic sorting of the nicotinic acetylcholine receptor (AChR). We report the occurrence of a cholesterol recognition motif, here coined “CARC”, in the transmembrane regions of AChR subunits that bear extensive contact with the surrounding lipid, and are thus optimally suited to convey cholesterol-mediated signaling from the latter. Three cholesterol molecules could be docked on the transmembrane segments of each AChR subunit, rendering a total of 15 cholesterol molecules per AChR molecule. The CARC motifs contribute each with an energy of interaction between 35 and 52 kJ.mol−1, adding up to a total of about 200 kJ.mol−1 per receptor molecule, i.e. ∼40% of the lipid solvation free energy/ AChR molecule. The CARC motif is remarkably conserved along the phylogenetic scale, from prokaryotes to human, suggesting that it could be responsible for some of the above structural/functional properties of the AChR
Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides
BACKGROUND: The alpha-7 nicotinic acetylcholine receptor (alpha7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the alpha7-nAChR, or peptide modulation of receptor expression. METHODOLOGY/PRINCIPAL FINDINGS: This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the alpha7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of alpha7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. CONCLUSIONS/SIGNIFICANCE: The results reported here demonstrate a hitherto unknown relationship between the alpha7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration
Upregulation of α7 Nicotinic Receptors by Acetylcholinesterase C-Terminal Peptides
BACKGROUND: The alpha-7 nicotinic acetylcholine receptor (alpha7-nAChR) is well known as a potent calcium ionophore that, in the brain, has been implicated in excitotoxicity and hence in the underlying mechanisms of neurodegenerative disorders such as Alzheimer's disease. Previous research implied that the activity of this receptor may be modified by exposure to a peptide fragment derived from the C-terminal region of the enzyme acetylcholinesterase. This investigation was undertaken to determine if the functional changes observed could be attributed to peptide binding interaction with the alpha7-nAChR, or peptide modulation of receptor expression. METHODOLOGY/PRINCIPAL FINDINGS: This study provides evidence that two peptides derived from the C-terminus of acetylcholinesterase, not only selectively displace specific bungarotoxin binding at the alpha7-nAChR, but also alter receptor binding properties for its familiar ligands, including the alternative endogenous agonist choline. Of more long-term significance, these peptides also induce upregulation of alpha7-nAChR mRNA and protein expression, as well as enhancing receptor trafficking to the plasma membrane. CONCLUSIONS/SIGNIFICANCE: The results reported here demonstrate a hitherto unknown relationship between the alpha7-nAChR and the non-enzymatic functions of acetylcholinesterase, mediated independently by its C-terminal domain. Such an interaction may prove valuable as a pharmacological tool, prompting new approaches for understanding, and combating, the process of neurodegeneration
Shedding Light on the Galaxy Luminosity Function
From as early as the 1930s, astronomers have tried to quantify the
statistical nature of the evolution and large-scale structure of galaxies by
studying their luminosity distribution as a function of redshift - known as the
galaxy luminosity function (LF). Accurately constructing the LF remains a
popular and yet tricky pursuit in modern observational cosmology where the
presence of observational selection effects due to e.g. detection thresholds in
apparent magnitude, colour, surface brightness or some combination thereof can
render any given galaxy survey incomplete and thus introduce bias into the LF.
Over the last seventy years there have been numerous sophisticated
statistical approaches devised to tackle these issues; all have advantages --
but not one is perfect. This review takes a broad historical look at the key
statistical tools that have been developed over this period, discussing their
relative merits and highlighting any significant extensions and modifications.
In addition, the more generalised methods that have emerged within the last few
years are examined. These methods propose a more rigorous statistical framework
within which to determine the LF compared to some of the more traditional
methods. I also look at how photometric redshift estimations are being
incorporated into the LF methodology as well as considering the construction of
bivariate LFs. Finally, I review the ongoing development of completeness
estimators which test some of the fundamental assumptions going into LF
estimators and can be powerful probes of any residual systematic effects
inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy &
Astrophysics Review. This version: bring in line with A&AR format
requirements, also minor typo corrections made, additional citations and
higher rez images adde
- …