1,738 research outputs found
The South Australian Heat Flow Anomaly in east Antarctica: hot rocks in a cool place.
第3回極域科学シンポジウム/第32回極域地学シンポジウム 11月30日(金) 統計数理研究所 3階セミナー
Topology and energy transport in networks of interacting photosynthetic complexes
We address the role of topology in the energy transport process that occurs
in networks of photosynthetic complexes. We take inspiration from light
harvesting networks present in purple bacteria and simulate an incoherent
dissipative energy transport process on more general and abstract networks,
considering both regular structures (Cayley trees and hyperbranched fractals)
and randomly-generated ones. We focus on the the two primary light harvesting
complexes of purple bacteria, i.e., the LH1 and LH2, and we use
network-theoretical centrality measures in order to select different LH1
arrangements. We show that different choices cause significant differences in
the transport efficiencies, and that for regular networks centrality measures
allow to identify arrangements that ensure transport efficiencies which are
better than those obtained with a random disposition of the complexes. The
optimal arrangements strongly depend on the dissipative nature of the dynamics
and on the topological properties of the networks considered, and depending on
the latter they are achieved by using global vs. local centrality measures. For
randomly-generated networks a random arrangement of the complexes already
provides efficient transport, and this suggests the process is strong with
respect to limited amount of control in the structure design and to the
disorder inherent in the construction of randomly-assembled structures.
Finally, we compare the networks considered with the real biological networks
and find that the latter have in general better performances, due to their
higher connectivity, but the former with optimal arrangements can mimic the
real networks' behaviour for a specific range of transport parameters. These
results show that the use of network-theoretical concepts can be crucial for
the characterization and design of efficient artificial energy transport
networks.Comment: 14 pages, 16 figures, revised versio
Massive transfusion protocol optimization
Hemorrhage is the leading cause of mortality in trauma, accounting for up to 80% of intraoperative trauma mortalities and nearly half of the deaths that occur within 24 hours of traumatic injury. The timely and appropriate administration of blood products in hemorrhage control is paramount to adequate resuscitation efforts. Given the need for rapid delivery of products, appropriate product infusion ratios, and adjunctive therapies for control of hemorrhage and anticoagulation reversal, it is essential that facilities have and maintain a Massive Transfusion Protocol. The goal of this project was to create a Massive Transfusion Protocol for our facility that incorporated current literature, involved buy-in from all involved departments, and optimized blood product ordering and delivery in the emergency setting. To this end, a literature search was performed, and a protocol was drafted which focused on single entry point ordering, and automated product delivery until massive transfusion was halted. Elective orders were also incorporated for easy requesting of coagulation reversal agents and pro-clotting factors. The final draft of the protocol was submitted to the hospital transfusion committee for approval and then incorporated into an EHR order set. Staff training was performed in all involved departments before deployment. Outcome measurement is ongoing but it is anticipated that this updated protocol will decrease time between disposition of major bleed and arrival of blood products at the bedside. It is also expected that this protocol will decrease the amount of crystalloid products given to major bleeding patients by increasing efficiency of blood product delivery
Electron Capture at Very Small Scattering Angles from Atomic Hydrogen by 25-125-keV Protons
Differential cross sections for electron capture in collisions between protons and hydrogen atoms have been experimentally determined for incident proton energies of 25, 60, and 125 keV in the center-of-mass scattering-angle range of 0-3 mrad. The experimental results compare more favorably with the results of both a multistate and a two-state calculation than with the results of a continuum distorted-wave-approximation calculation. There is no evidence of a Jackson-Schiff-type minimum
Recommended from our members
Feasibility study and design concept for an orbiting ice-penetrating radar sounder to characterize in three-dimensions the Europan ice mantle down to (and including) any ice/ocean interface
This report presents a radar sounding model based on the range of current working hypotheses for the nature of Europa's icy shell.Institute for Geophysic
Constant amplitude and post-overload fatigue crack growth behavior in PM aluminum alloy AA 8009
A recently developed, rapidly solidified, powder metallurgy, dispersion strengthened aluminum alloy, AA 8009, was fatigue tested at room temperature in lab air. Constant amplitude/constant delta kappa and single spike overload conditions were examined. High fatigue crack growth rates and low crack closure levels compared to typical ingot metallurgy aluminum alloys were observed. It was proposed that minimal crack roughness, crack path deflection, and limited slip reversibility, resulting from ultra-fine microstructure, were responsible for the relatively poor da/dN-delta kappa performance of AA 8009 as compared to that of typical IM aluminum alloys
Long-lived quantum coherence in photosynthetic complexes at physiological temperature
Photosynthetic antenna complexes capture and concentrate solar radiation by
transferring the excitation to the reaction center which stores energy from the
photon in chemical bonds. This process occurs with near-perfect quantum
efficiency. Recent experiments at cryogenic temperatures have revealed that
coherent energy transfer - a wavelike transfer mechanism - occurs in many
photosynthetic pigment-protein complexes (1-4). Using the Fenna-Matthews-Olson
antenna complex (FMO) as a model system, theoretical studies incorporating both
incoherent and coherent transfer as well as thermal dephasing predict that
environmentally assisted quantum transfer efficiency peaks near physiological
temperature; these studies further show that this process is equivalent to a
quantum random walk algorithm (5-8). This theory requires long-lived quantum
coherence at room temperature, which never has been observed in FMO. Here we
present the first evidence that quantum coherence survives in FMO at
physiological temperature for at least 300 fs, long enough to perform a
rudimentary quantum computational operation. This data proves that the
wave-like energy transfer process discovered at 77 K is directly relevant to
biological function. Microscopically, we attribute this long coherence lifetime
to correlated motions within the protein matrix encapsulating the chromophores,
and we find that the degree of protection afforded by the protein appears
constant between 77 K and 277 K. The protein shapes the energy landscape and
mediates an efficient energy transfer despite thermal fluctuations. The
persistence of quantum coherence in a dynamic, disordered system under these
conditions suggests a new biomimetic strategy for designing dedicated quantum
computational devices that can operate at high temperature.Comment: PDF files, 15 pages, 3 figures (included in the PDF file
The thermodynamic dual structure of linear-dissipative driven systems
The spontaneous emergence of dynamical order, such as persistent currents, is
sometimes argued to require principles beyond the entropy maximization of the
second law of thermodynamics. I show that, for linear dissipation in the
Onsager regime, current formation can be driven by exactly the Jaynesian
principle of entropy maximization, suitably formulated for extended systems and
nonequilibrium boundary conditions. The Legendre dual structure of equilibrium
thermodynamics is also preserved, though it requires the admission of
current-valued state variables, and their correct incorporation in the entropy
God\u27s Church Is Just: A Specific Discussion Of Some Cases of Church Discipline
https://digitalcommons.acu.edu/crs_books/1364/thumbnail.jp
Vibronic coupling explains the ultrafast carotenoid-to-bacteriochlorophyll energy transfer in natural and artificial light harvesters
The initial energy transfer in photosynthesis occurs between the
light-harvesting pigments and on ultrafast timescales. We analyze the
carotenoid to bacteriochlorophyll energy transfer in LH2 Marichromatium
purpuratum as well as in an artificial light-harvesting dyad system by using
transient grating and two-dimensional electronic spectroscopy with 10 fs time
resolution. We find that F\"orster-type models reproduce the experimentally
observed 60 fs transfer times, but overestimate coupling constants, which leads
to a disagreement with both linear absorption and electronic 2D-spectra. We
show that a vibronic model, which treats carotenoid vibrations on both
electronic ground and excited state as part of the system's Hamiltonian,
reproduces all measured quantities. Importantly, the vibronic model presented
here can explain the fast energy transfer rates with only moderate coupling
constants, which are in agreement with structure based calculations.
Counterintuitively, the vibrational levels on the carotenoid electronic ground
state play a central role in the excited state population transfer to
bacteriochlorophyll as the resonance between the donor-acceptor energy gap and
vibrational ground state energies is the physical basis of the ultrafast energy
transfer rates in these systems
- …