414 research outputs found

    Piezoelectric-Layered Structures Based on Synthetic Diamond

    Get PDF
    Results of theoretical, modeling, and experimental investigation of microwave acoustic properties of piezoelectric layered structure “Me1/AlN/Me2/(100) diamond” have been presented within a wide frequency band 0.5–10 GHz. The highest among known material quality parameter Q × f ~ 1014 Hz for the IIa type synthetic diamond at operational frequency ~10 GHz has been found. Conditions of UHF excitation and propagation of the bulk, surface, and Lamb plate acoustic waves have been established and studied experimentally. Frequency dependencies of the impedance and quality factor have been studied to obtain a number of piezoelectric layered structure parameters as electromechanical coupling coefficient, equivalent circuit parameters, etc. Results of 2D finite element modeling of a given piezoelectric layered structure have been compared with the experimental ones obtained for the real high-overtone bulk acoustic resonator. An origin of high-overtone bulk acoustic resonator’s spurious resonant peaks has been studied. Results on UHF acoustic attenuation of IIa-type synthetic single crystalline diamond have been presented and discussed in terms of Akhiezer and Landau–Rumer mechanisms of phonon–phonon interaction. Identification and classification of Lamb waves belonging to several branches as well as dispersive curves of phase velocities have been executed. Necessity of introducing a more correct Lamb-mode classification has been recognized

    Bogoliubov Renormalization Group and Symmetry of Solution in Mathematical Physics

    Get PDF
    Evolution of the concept known in the theoretical physics as the Renormalization Group (RG) is presented. The corresponding symmetry, that has been first introduced in QFT in mid-fifties, is a continuous symmetry of a solution with respect to transformation involving parameters (e.g., of boundary condition) specifying some particular solution. After short detour into Wilson's discrete semi-group, we follow the expansion of QFT RG and argue that the underlying transformation, being considered as a reparameterisation one, is closely related to the self-similarity property. It can be treated as its generalization, the Functional Self-similarity (FS). Then, we review the essential progress during the last decade of the FS concept in application to boundary value problem formulated in terms of differential equations. A summary of a regular approach recently devised for discovering the RG = FS symmetries with the help of the modern Lie group analysis and some of its applications are given. As a main physical illustration, we give application of new approach to solution for a problem of self-focusing laser beam in a non-linear medium.Comment: Contribution to the proceedings of conference "RG 2000" (Taxco, Mexico, Jan. 1999). To be published in Physics Report

    Generalized pupil function of a compound X-ray refractive lens

    Get PDF
    Quality of a refractive compound X-ray lens can be limited by imperfections in surfaces of unit lenses and stacking precision. In general case both the lens transmission and optical aberrations define properties of a beam in the lens exit plane; together they can be expressed in terms of the generalized pupil function. In this work we measure this function for a diamond single crystal compound refractive lens. Consequently, we apply the pupil function to evaluate the performance of the examined compound refractive X-ray lens. A number of practically important conclusions can be drawn from such analysis

    The high-rate data challenge: computing for the CBM experiment

    Get PDF
    The Compressed Baryonic Matter experiment (CBM) is a next-generation heavy-ion experiment to be operated at the FAIR facility, currently under construction in Darmstadt, Germany. A key feature of CBM is very high interaction rate, exceeding those of contemporary nuclear collision experiments by several orders of magnitude. Such interaction rates forbid a conventional, hardware-triggered readout; instead, experiment data will be freely streaming from self-triggered front-end electronics. In order to reduce the huge raw data volume to a recordable rate, data will be selected exclusively on CPU, which necessitates partial event reconstruction in real-time. Consequently, the traditional segregation of online and offline software vanishes; an integrated on- and offline data processing concept is called for. In this paper, we will report on concepts and developments for computing for CBM as well as on the status of preparations for its first physics run

    A precision device needs precise simulation: Software description of the CBM Silicon Tracking System

    Get PDF
    Precise modelling of detectors in simulations is the key to the understanding of their performance, which, in turn, is a prerequisite for the proper design choice and, later, for the achievement of valid physics results. In this report, we describe the implementation of the Silicon Tracking System (STS), the main tracking device of the CBM experiment, in the CBM software environment. The STS makes uses of double-sided silicon micro-strip sensors with double metal layers. We present a description of transport and detector response simulation, including all relevant physical effects like charge creation and drift, charge collection, cross-talk and digitization. Of particular importance and novelty is the description of the time behavior of the detector, since its readout will not be externally triggered but continuous. We also cover some aspects of local reconstruction, which in the CBM case has to be performed in real-time and thus requires high-speed algorithms

    Application of Thin Piezoelectric Films in Diamond-Based Acoustoelectronic Devices

    Get PDF
    The theory of external loading influence on acoustic parameters of piezoelectric five-layered structure as “Al/(001) AlN/Mo/(001) diamond/Me” has been developed. Oscillations in diamond-based high-overtone bulk acoustic resonators (HBARs) have been investigated in terms of 3D FEM simulation. Peculiarities of technology of aluminum-scandium nitride (ASN) films have been discussed. Composition Al0.8Sc0.2N was obtained to create the diamond-based HBAR and SAW resonator. Application of ASN films has resulted in a drastic increasing an electromechanical coupling up to 2.5 times in comparison with aluminum nitride. Development of ASN technology in a way of producing a number of compositions with the better piezoelectric properties has a clear prospective. SAW resonator based on “Al IDT/(001) AlN/(001) diamond” structure has been investigated in the band 400–1500 MHz. The highest-quality factor Q ≈ 1050 was observed for the Sezawa mode at 1412 MHz. Method of measuring HBAR’s parameters within 4–400 K at 0.5–5 GHz has been developed. Results on temperature dependence of diamond’s Q-factor at relatively low frequencies were quite different in comparison with the ones at the frequencies up to 5 GHz. Difference could be explained in terms of changing mechanism of acoustic attenuation from Akhiezer’s type to the Landau-Rumer’s one at higher frequencies in diamond
    corecore