85 research outputs found

    Oncogenomic Approaches in Exploring Gain of Function of Mutant p53

    Get PDF
    Cancer is caused by the spatial and temporal accumulation of alterations in the genome of a given cell. This leads to the deregulation of key signalling pathways that play a pivotal role in the control of cell proliferation and cell fate. The p53 tumor suppressor gene is the most frequent target in genetic alterations in human cancers. The primary selective advantage of such mutations is the elimination of cellular wild type p53 activity. In addition, many evidences in vitro and in vivo have demonstrated that at least certain mutant forms of p53 may possess a gain of function, whereby they contribute positively to cancer progression. The fine mapping and deciphering of specific cancer phenotypes is taking advantage of molecular-profiling studies based on genome-wide approaches. Currently, high-throughput methods such as array-based comparative genomic hybridization (CGH array), single nucleotide polymorphism array (SNP array), expression arrays and ChIP-on-chip arrays are available to study mutant p53-associated alterations in human cancers. Here we will mainly focus on the integration of the results raised through oncogenomic platforms that aim to shed light on the molecular mechanisms underlying mutant p53 gain of function activities and to provide useful information on the molecular stratification of tumor patients

    Circular RNAs in embryogenesis and cell differentiation with a focus on cancer development

    Get PDF
    In the recent years thousands of non-coding RNAs have been identified, also thanks to highthroughput sequencing technologies. Among them, circular RNAs (circRNAs) are a well-represented class characterized by the high sequence conservation and cell type specific expression in eukaryotes. They are covalently closed loops formed through back-splicing. Recently, circRNAs were shown to regulate a variety of cellular processes functioning as miRNA sponges, RBP binding molecules, transcriptional regulators, scaffold for protein translation, as well as immune regulators. A growing number of studies are showing that deregulated expression of circRNAs plays important and decisive actions during the development of several human diseases, including cancer. The research on their biogenesis and on the various molecular mechanisms in which they are involved is going very fast, however, there are still few studies that address their involvement in embryogenesis and eukaryotic development. This review has the intent to describe the most recent progress in the study of the biogenesis and molecular activities of circRNAs providing insightful information in the field of embryogenesis and cell differentiation. In addition, we describe the latest research on circRNAs as novel promising biomarkers in diverse types of tumors

    Physical interaction with human tumor-derived p53 mutants inhibits p63 activities

    Get PDF
    The p53 tumor suppressor gene is the most frequent target for genetic alterations in human cancers, whereas the recently discovered homologues p73 and p63 are rarely mutated. We and others have previously reported that human tumor-derived p53 mutants can engage in a physical association with different isoforms of p73, inhibiting their transcriptional activity. Here, we report that human tumor-derived p53 mutants can associate in vitro and in vivo with p63 through their respective core domains. We show that the interaction with mutant p53 impairs in vitro and in vivo sequence-specific DNA binding of p63 and consequently affects its transcriptional activity. We also report that in cells carrying endogenous mutant p53, such as T47D cells, p63 is unable to recruit some of its target gene promoters. Unlike wild-type p53, the binding to specific p53 mutants markedly counteracts p63-induced growth inhibition. This effect is, at least partially, mediated by the core domain of mutant p53. Thus, inactivation of p53 family members may contribute to the biological properties of specific p53 mutants in promoting tumorigenesis and in conferring selective survival advantage to cancer cells

    Temporal correlation of morphological and biochemical changes with the recruitment of different mechanisms of reactive oxygen species formation during human SW872 cell adipogenic differentiation

    Get PDF
    none8noHuman SW872 preadipocyte conversion to mature adipocytes is associated with time-dependent changes in differentiation markers' expression and with morphological changes accompanied by the accumulation of lipid droplets (LDs) as well as by increased mitochondriogenesis and mitochondrial membrane potential. Under identical conditions, the formation of reactive oxygen species (ROS) revealed with a general probe was significant at days 3 and 10 of differentiation and bearly detectable at day 6. NADPH oxidase (NOX)-2 activity determined with an immunocytochemical approach followed a very similar pattern. There was no evidence of mitochondrial ROS (mROS), as detected with a selective fluorescence probe, at days 3 and 6, possibly due to the triggering of the Nrf-2 antioxidant response. mROS were instead clearly detected at day 10, concomitantly with the accumulation of very large LDs, oxidation of both cardiolipin and thioredoxin 2, and decreased mitochondrial glutathione. In conclusion, the morphological and biochemical changes of differentiating SW872 cells are accompanied by the discontinuous formation of ROS derived from NOX-2, increasingly implicated in adipogenesis and adipose tissue dysfunction. In addition, mROS formation was significant only in the late phase of differentiation and was associated with mitochondrial dysfunction.openFiorani, Mara; De Matteis, Rita; Canonico, Barbara; Blandino, Giulia; Mazzoli, Alessandro; Montanari, Mariele; Guidarelli, Andrea; Cantoni, OrazioFiorani, Mara; De Matteis, Rita; Canonico, Barbara; Blandino, Giulia; Mazzoli, Alessandro; Montanari, Mariele; Guidarelli, Andrea; Cantoni, Orazi

    Expression of ID4 protein in breast cancer cells induces reprogramming of tumour-associated macrophages

    Get PDF
    Background: As crucial regulators of the immune response against pathogens, macrophages have been extensively shown also to be important players in several diseases, including cancer. Specifically, breast cancer macrophages tightly control the angiogenic switch and progression to malignancy. ID4, a member of the ID (inhibitors of differentiation) family of proteins, is associated with a stem-like phenotype and poor prognosis in basal-like breast cancer. Moreover, ID4 favours angiogenesis by enhancing the expression of pro-angiogenic cytokines interleukin-8, CXCL1 and vascular endothelial growth factor. In the present study, we investigated whether ID4 protein exerts its pro-angiogenic function while also modulating the activity of tumour-associated macrophages in breast cancer. Methods: We performed IHC analysis of ID4 protein and macrophage marker CD68 in a triple-negative breast cancer series. Next, we used cell migration assays to evaluate the effect of ID4 expression modulation in breast cancer cells on the motility of co-cultured macrophages. The analysis of breast cancer gene expression data repositories allowed us to evaluate the ability of ID4 to predict survival in subsets of tumours showing high or low macrophage infiltration. By culturing macrophages in conditioned media obtained from breast cancer cells in which ID4 expression was modulated by overexpression or depletion, we identified changes in the expression of ID4-dependent angiogenesis-related transcripts and microRNAs (miRNAs, miRs) in macrophages by RT-qPCR. Results: We determined that ID4 and macrophage marker CD68 protein expression were significantly associated in a series of triple-negative breast tumours. Interestingly, ID4 messenger RNA (mRNA) levels robustly predicted survival, specifically in the subset of tumours showing high macrophage infiltration. In vitro and in vivo migration assays demonstrated that expression of ID4 in breast cancer cells stimulates macrophage motility. At the molecular level, ID4 protein expression in breast cancer cells controls, through paracrine signalling, the activation of an angiogenic programme in macrophages. This programme includes both the increase of angiogenesis-related mRNAs and the decrease of members of the anti-angiogenic miR-15b/107 group. Intriguingly, these miRNAs control the expression of the cytokine granulin, whose enhanced expression in macrophages confers increased angiogenic potential. Conclusions: These results uncover a key role for ID4 in dictating the behaviour of tumour-associated macrophages in breast cancer

    Paracrine signaling from breast cancer cells causes activation of ID4 expression in tumor-associated macrophages

    Get PDF
    Background: Tumor-associated macrophages (TAMs) constitute a major portion of the leukocyte infiltrate found in breast cancer (BC). BC cells may reprogram TAMs in a pro-angiogenic and immunosuppressive sense. We previously showed that high expression of the ID4 protein in triple-negative BC cells leads to the induction of a proangiogenic program in TAMs also through the downregulation of miR-107. Here, we investigated the expression and function of the ID4 protein in TAMs. Methods: Human macrophages obtained from peripheral blood-derived monocytes (PBDM) and mouse RAW264.7 cells were used as macrophage experimental systems. ID4-correlated mRNAs of the TCGA and E-GEOD-18295 datasets were analyzed. Results: We observed that BC cells determine a paracrine induction of ID4 expression and activation of the ID4 promoter in neighboring macrophages. Interestingly, ID4 expression is higher in macrophages associated with invasive tumor cells compared to general TAMs, and ID4-correlated mRNAs are involved in various pathways that were previously reported as relevant for TAM functions. Selective depletion of ID4 expression in macrophages enabled validation of the ability of ID4 to control the expression of YAP1 and of its downstream targets CTGF and CYR61. Conclusion: Collectively, our results show that activation of ID4 expression in TAMs is observed as a consequence of BC cell paracrine activity and could participate in macrophage reprogramming in BC

    Transcriptional activation of the miR-17-92 cluster is involved in the growth-promoting effects of MYB in human Ph-positive leukemia cells.

    Get PDF
    MicroRNAs, non-coding regulators of gene expression, are likely to function as important downstream effectors of many transcription factors including MYB. Optimal levels of MYB are required for transformation/maintenance of BCR-ABL-expressing cells. We investigated whether MYB silencing modulates microRNA expression in Philadelphia-positive (Ph+) leukemia cells and if MYB-regulated microRNAs are important for the MYB addiction of these cells. Thirty-five microRNAs were modulated by MYB silencing in lymphoid and erythromyeloid chronic myeloid leukemia-blast crisis BV173 and K562 cells; 15 of these were concordantly modulated in both lines. We focused on the miR-17-92 cluster because of its oncogenic role in tumors and found that: i) it is a direct MYB target; ii) it partially rescued the impaired proliferation and enhanced apoptosis of MYB-silenced BV173 cells. Moreover, we identified FRZB, a Wnt/β-catenin pathway inhibitor, as a novel target of the miR-17-92 cluster. High expression of MYB in blast cells from 2 Ph+leukemia patients correlated positively with the miR-17-92 cluster and inversely with FRZB. This expression pattern was also observed in a microarray dataset of 122 Ph+acute lymphoblastic leukemias. In vivo experiments in NOD scid gamma mice injected with BV173 cells confirmed that FRZB functions as a Wnt/β-catenin inhibitor even as they failed to demonstrate that this pathway is important for BV173-dependent leukemogenesis. These studies illustrate the global effects of MYB expression on the microRNAs profile of Ph+cells and supports the concept that the MYB addiction of these cells is, in part, caused by modulation of microRNA-regulated pathways affecting cell proliferation and survival. Copyright© 2019 Ferrata Storti Foundation
    • …
    corecore