285 research outputs found

    The Gaia-ESO Survey: radial metallicity gradients and age-metallicity relation of stars in the Milky Way disk

    Get PDF
    We study the relationship between age, metallicity, and alpha-enhancement of FGK stars in the Galactic disk. The results are based upon the analysis of high-resolution UVES spectra from the Gaia-ESO large stellar survey. We explore the limitations of the observed dataset, i.e. the accuracy of stellar parameters and the selection effects that are caused by the photometric target preselection. We find that the colour and magnitude cuts in the survey suppress old metal-rich stars and young metal-poor stars. This suppression may be as high as 97% in some regions of the age-metallicity relationship. The dataset consists of 144 stars with a wide range of ages from 0.5 Gyr to 13.5 Gyr, Galactocentric distances from 6 kpc to 9.5 kpc, and vertical distances from the plane 0 < |Z| < 1.5 kpc. On this basis, we find that i) the observed age-metallicity relation is nearly flat in the range of ages between 0 Gyr and 8 Gyr; ii) at ages older than 9 Gyr, we see a decrease in [Fe/H] and a clear absence of metal-rich stars; this cannot be explained by the survey selection functions; iii) there is a significant scatter of [Fe/H] at any age; and iv) [Mg/Fe] increases with age, but the dispersion of [Mg/Fe] at ages > 9 Gyr is not as small as advocated by some other studies. In agreement with earlier work, we find that radial abundance gradients change as a function of vertical distance from the plane. The [Mg/Fe] gradient steepens and becomes negative. In addition, we show that the inner disk is not only more alpha-rich compared to the outer disk, but also older, as traced independently by the ages and Mg abundances of stars.Comment: accepted for publication in A&

    Competition for light can drive adverse species-composition shifts in the Amazon Forest under elevated CO2

    Get PDF
    The resilience of biodiverse forests to climate change depends on an interplay of adaptive processes operating at multiple temporal and organizational scales. These include short-term acclimation of physiological processes like photosynthesis and respiration, mid-term changes in forest structure due to competition, and long-term changes in community composition arising from competitive exclusion and genetic trait evolution. To investigate the roles of diversity and adaptation for forest resilience, we present Plant-FATE, a parsimonious eco-evolutionary vegetation model. Tested with data from a hyperdiverse Amazonian terra-firme forest, our model accurately predicts multiple emergent ecosystem properties characterizing forest structure and function. Under elevated CO2 conditions, we predict an increase in productivity, leaf area, and aboveground biomass, with the magnitude of this increase declining in nutrient-deprived soils if trees allocate more carbon to the rhizosphere to overcome nutrient limitation. Furthermore, increased aboveground productivity leads to greater competition for light and drives a shift in community composition towards fast-growing but short-lived species characterized by lower wood densities. Such a transition reduces the carbon residence time of woody biomass, dampening carbon-sink strength and potentially rendering the Amazon Forest more vulnerable to future climatic extreme events

    The Gaia-ESO Survey: Homogenisation of stellar parameters and elemental abundances

    Get PDF
    The Gaia-ESO Survey is a public spectroscopic survey that targeted ≳105 stars covering all major components of the Milky Way from the end of 2011 to 2018, delivering its final public release in May 2022. Unlike other spectroscopic surveys, Gaia-ESO is the only survey that observed stars across all spectral types with dedicated, specialised analyses: from O (Teff ~ 30 000–52 000 K) all the way to K-M (≳3500 K). The physics throughout these stellar regimes varies significantly, which has previously prohibited any detailed comparisons between stars of significantly different types. In the final data release (internal data release 6) of the Gaia-ESO Survey, we provide the final database containing a large number of products, such as radial velocities, stellar parameters and elemental abundances, rotational velocity, and also, for example, activity and accretion indicators in young stars and membership probability in star clusters for more than 114 000 stars. The spectral analysis is coordinated by a number of working groups (WGs) within the survey, each specialised in one or more of the various stellar samples. Common targets are analysed across WGs to allow for comparisons (and calibrations) amongst instrumental setups and spectral types. Here we describe the procedures employed to ensure all survey results are placed on a common scale in order to arrive at a single set of recommended results for use by all survey collaborators. We also present some general quality and consistency checks performed on the entirety of the survey results.This work was partly supported by the European Union FP7 programme through ERC grant number 320360 and by the Leverhulme Trust through grant RPG-2012-541. We acknowledge the support from INAF and Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR) in the form of the grant “Premiale VLT 2012”. L. Magrini and M. Van der Swaelmen acknowledge support by the WEAVE Italian consortium, and by the INAF Grant “Checs”. A.J. Korn acknowledges support by the Swedish National Space Agency (SNSA). A. Lobel acknowledges support in part by the Belgian Federal Science Policy Office under contract no. BR/143/A2/BRASS and by the European Union Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie grant Agreement No. 823734. D.K. Feuillet was partly supported by grant no. 2016-03412 from the Swedish Research Council. D. Montes acknowledges financial support from the Agencia Estatal de Investigacion of the Ministerio de Ciencia, Innovation through project PID2019-109522GB-C54 /AEI/10.13039/501100011033. E. Marfil acknowledges financial support from the European Regional Development Fund (ERDF) and the Gobierno de Canarias through project ProID2021010128. J.I. Gonzalez Hernandez acknowledges financial support from the Spanish Ministry of Science and Innovation (MICINN) project PID2020-117493GB-I00. M. Bergemann is supported through the Lise Meitner grant from the Max Planck Society and acknowledges support by the Collaborative Research centre SFB 881 (projects A5, A10), Heidelberg University, of the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation). This project has received funding from the European Research Council (ERC) under the European Union, Horizon 2020 research and innovation programme (Grant agreement No. 949173). P. Jofré acknowledges financial support of FONDECYT Regular 1200703 as well as Nucleo Mile-nio ERIS NCN2021_017. R. Smiljanic acknowledges support from the National Science Centre, Poland (2014/15/B/ST/03981). S.R. Berlanas acknowledges support by MCIN/AEI/10.13039/501100011033 (contract FJC 2020-045785-I) and NextGeneration EU/PRTR and MIU (UNI/551/2021) through grant Margarita Salas-ULL. T. Bensby acknowledges financial support by grant No. 2018-04857 from the Swedish Research Council. T. Merle is supported by a grant from the Foundation ULB. T. Morel are grateful to Belgian F.R.S.-FNRS for support, and are also indebted for an ESA/PRODEX Belspo contract related to the Gaia Data Processing and Analysis Consortium and for support through an ARC grant for Concerted Research Actions financed by the Federation Wallonie-Brussels. W. Santos acknowledges FAPERJ for a Ph.D. fellowship. H.M. Tabernero acknowledges financial support from the Agencia Estatal de Investigation of the Ministerio de Ciencia, Innovation through project PID2019-109522GB-C51/AEI/10.13039/501100011033

    A model intercomparison project to study the role of plant functional diversity in the response of tropical forests to drought

    Get PDF
    Uncertainty in how the land carbon (C) sink will change over time contributes to uncertainty in Earth system model (ESM) projections of climate change. Much of the land sink is thought to reside in old-growth tropical forests, but recent analyses suggest a diminishing C sink in these forests due to rising temperatures and drought. Thus, there is an urgent need to better understand tropical forest responses to drought and to incorporate this understanding into ESMs. Previous work with vegetation demographic models (VDMs) – which represent the dynamics of individuals or cohorts, along with hydrology and biogeochemistry − suggest that functional diversity can enhance tropical forest resilience to climate change. However, there is little understanding of how different approaches to representing trait diversity and demography affect model outcomes. To explore the potential for trait diversity to moderate tropical forest responses to drought, we explored the behavior of nine VDMs, ranging from models with detailed site-level parameterizations to more generalized land models designed as ESM components. The behavior of each model was studied using soil and meteorological data collected at each of two tropical forest sites: Paracou Research Station, French Guiana, and Tapajos National Forest, Brazil. Low and high trait-diversity scenarios were simulated for each model using historical meteorology, as well as reduced rainfall scenarios. Few models showed strong effects of trait diversity on drought resistance (short-term response of forest biomass to rainfall reduction), but most models showed positive effects of diversity on resilience (long-term recovery of forest biomass following the initial biomass loss due to rainfall reduction). Long-term recovery was always associated with shifts in community composition towards greater drought-tolerance. However, there were large differences among models in the degree and time-scale of recovery. These differences were unrelated to the goodness-of-fit of model predictions to observations of biomass, productivity, and soil moisture, suggesting that site-level calibration of model parameters is unlikely to strongly affect biodiversity-ecosystem functioning relationships in VDMs. Rather, the degree to which diversity moderated drought responses depended on which axes of trait variation were represented in the model, as well as model assumptions that affect the time-scale over which community composition shifts in response to environmental change. Our study suggests that incorporating trait diversity and demography into ESMs would likely lead to altered climate projections, but additional empirical and modeling work is needed to provide the ESM community with clear guidance on model development

    Evolution of the use of corticosteroids for the treatment of hospitalised COVID-19 patients in Spain between March and November 2020: SEMI-COVID national registry

    Get PDF
    Objectives: Since the results of the RECOVERY trial, WHO recommendations about the use of corticosteroids (CTs) in COVID-19 have changed. The aim of the study is to analyse the evolutive use of CTs in Spain during the pandemic to assess the potential influence of new recommendations. Material and methods: A retrospective, descriptive, and observational study was conducted on adults hospitalised due to COVID-19 in Spain who were included in the SEMI-COVID- 19 Registry from March to November 2020. Results: CTs were used in 6053 (36.21%) of the included patients. The patients were older (mean (SD)) (69.6 (14.6) vs. 66.0 (16.8) years; p < 0.001), with hypertension (57.0% vs. 47.7%; p < 0.001), obesity (26.4% vs. 19.3%; p < 0.0001), and multimorbidity prevalence (20.6% vs. 16.1%; p < 0.001). These patients had higher values (mean (95% CI)) of C-reactive protein (CRP) (86 (32.7-160) vs. 49.3 (16-109) mg/dL; p < 0.001), ferritin (791 (393-1534) vs. 470 (236- 996) µg/dL; p < 0.001), D dimer (750 (430-1400) vs. 617 (345-1180) µg/dL; p < 0.001), and lower Sp02/Fi02 (266 (91.1) vs. 301 (101); p < 0.001). Since June 2020, there was an increment in the use of CTs (March vs. September; p < 0.001). Overall, 20% did not receive steroids, and 40% received less than 200 mg accumulated prednisone equivalent dose (APED). Severe patients are treated with higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%. Conclusions: Patients with greater comorbidity, severity, and inflammatory markers were those treated with CTs. In severe patients, there is a trend towards the use of higher doses. The mortality benefit was observed in patients with oxygen saturation </=90%

    The Gaia-ESO Public Spectroscopic Survey: Motivation, implementation, GIRAFFE data processing, analysis, and final data products

    Get PDF
    Context. The Gaia-ESO Public Spectroscopic Survey is an ambitious project designed to obtain astrophysical parameters and elemental abundances for 100 000 stars, including large representative samples of the stellar populations in the Galaxy, and a well-defined sample of 60 (plus 20 archive) open clusters. We provide internally consistent results calibrated on benchmark stars and star clusters, extending across a very wide range of abundances and ages. This provides a legacy data set of intrinsic value, and equally a large wide-ranging dataset that is of value for the homogenisation of other and future stellar surveys and Gaia's astrophysical parameters. Aims. This article provides an overview of the survey methodology, the scientific aims, and the implementation, including a description of the data processing for the GIRAFFE spectra. A companion paper introduces the survey results. Methods. Gaia-ESO aspires to quantify both random and systematic contributions to measurement uncertainties. Thus, all available spectroscopic analysis techniques are utilised, each spectrum being analysed by up to several different analysis pipelines, with considerable effort being made to homogenise and calibrate the resulting parameters. We describe here the sequence of activities up to delivery of processed data products to the ESO Science Archive Facility for open use. Results. The Gaia-ESO Survey obtained 202 000 spectra of 115 000 stars using 340 allocated VLT nights between December 2011 and January 2018 from GIRAFFE and UVES. Conclusions. The full consistently reduced final data set of spectra was released through the ESO Science Archive Facility in late 2020, with the full astrophysical parameters sets following in 2022. A companion article reviews the survey implementation, scientific highlights, the open cluster survey, and data products

    The Gaia-ESO Public Spectroscopic Survey: Implementation, data products, open cluster survey, science, and legacy

    Get PDF
    Context. In the last 15 years different ground-based spectroscopic surveys have been started (and completed) with the general aim of delivering stellar parameters and elemental abundances for large samples of Galactic stars, complementing Gaia astrometry. Among those surveys, the Gaia-ESO Public Spectroscopic Survey, the only one performed on a 8m class telescope, was designed to target 100 000 stars using FLAMES on the ESO VLT (both Giraffe and UVES spectrographs), covering all the Milky Way populations, with a special focus on open star clusters. Aims. This article provides an overview of the survey implementation (observations, data quality, analysis and its success, data products, and releases), of the open cluster survey, of the science results and potential, and of the survey legacy. A companion article reviews the overall survey motivation, strategy, Giraffe pipeline data reduction, organisation, and workflow. Methods. We made use of the information recorded and archived in the observing blocks; during the observing runs; in a number of relevant documents; in the spectra and master catalogue of spectra; in the parameters delivered by the analysis nodes and the working groups; in the final catalogue; and in the science papers. Based on these sources, we critically analyse and discuss the output and products of the Survey, including science highlights. We also determined the average metallicities of the open clusters observed as science targets and of a sample of clusters whose spectra were retrieved from the ESO archive. Results. The Gaia-ESO Survey has determined homogeneous good-quality radial velocities and stellar parameters for a large fraction of its more than 110 000 unique target stars. Elemental abundances were derived for up to 31 elements for targets observed with UVES. Lithium abundances are delivered for about 1/3 of the sample. The analysis and homogenisation strategies have proven to be successful; several science topics have been addressed by the Gaia-ESO consortium and the community, with many highlight results achieved. Conclusions. The final catalogue will be released through the ESO archive in the first half of 2022, including the complete set of advanced data products. In addition to these results, the Gaia-ESO Survey will leave a very important legacy, for several aspects and for many years to come
    corecore