31 research outputs found
Aquaculture system diversity and sustainable development : fish farms and their representation
Initiatives for the sustainable development of aquaculture have so far focused on the production of codes of conduct, of best management practices, of standards etc., most of which have been developed by international organisations, the industrial sector and non governmental organisations. They were, to a large extent, produced using a "top down" process and inspired by models from intensive industrial shrimp and sea fish farming (mainly salmon). However, most of global aquaculture production comes from small-and medium-sized farms, essentially in Asia which contributes 92% of the total world aquaculture production volume. The objective of this article is to define the contours of systemic typologies that are able to express the sustainability conditions of aquaculture systems. The proposed approach builds on surveys of aquaculture systems which differ in terms of their biogeographical nature (temperate/tropical and north/south countries) or their farming techniques and their governance systems. This work is a prerequisite to any attempt at an individualised and comparative evaluation of specific aquaculture systems from either global or territorial viewpoints. In order to go beyond the cleavage of a typology based on the differentiation between developed and developing countries, three typologies were produced. These typologies allow for discriminatory variables to be identified such as for example the marketing methods or the pace of innovation: a structural typology, a functional typology and a systemic typology. Finally, the representations of aquaculture activity and of its sustainability that producers have of the 4 different types that emerge from the systemic typology were recorded and analyzed
Water delivery capacity of a vacuum airlift : Application to water recycling in aquaculture systems
International audienc
Mass transfer efficiency of a vacuum airlift-application to water recycling in aquaculture systems
International audienc
Phylogenetic characterization of the heterotrophic bacterial communities inhabiting a marine recirculating aquaculture system
Aims: The aim of the present work was to characterize the heterotrophic bacterial community of a marine recirculating aquaculture system (RAS). Methods and Results: An experimental RAS was sampled for the rearing water (RW) and inside the biofilter. Samples were analysed for bacterial abundances, community structure and composition by using a combination of culture-dependent and -independent techniques. The most represented species detected among biofilter clones was Pseudomonas stutzeri, while Ruegeria spp. and Roseobacter spp. were more abundant among isolates. In comparison, the genera Roseobacter and Ruegeria were well represented in both the biofilter and the RW samples. A variety of possible bacterial pathogens (e.g. Vibrio spp., Erwinia spp. and Coxiella spp.) were also identified in this study. Conclusions: Results revealed that the bacterial community in the RW was quite different to that associated with the biofilter. Moreover, data obtained suggest that the whole bacterial community can be involved in maintaining an effective and a stable rearing environment (shelter effect). Significance and Impact of the Study: Improving the reliability and the sustainability of RAS depends on the correct management of the bacterial populations inside it. This study furnishes more accurate information on the bacterial populations and better clarifies the existing relationships between the bacterial flora in the RW and that associated with the biofilter
Adaptation des typologies d_exploitations aquacoles aux exigences du développement durable = Adaptation of aquaculture system typologies to the requirements of sustainable development
The new sustainable development data repository requires new analysis grids, in particular for factors accounted for in productive system typologies. This paper, based on the aquaculture example, analyses the diversity in aquaculture systems with respect to sustainable development. Various typologies are obtained by evaluating structural and functional approaches integrating variables related to production and regulation systems and to the territorial insertion of fish farms. Categories have been defined on a scale based on a set of five sites, which are representative of a wider range of aquaculture systems. Use of these categories goes beyond the local typologies and prepares a generic meta-typology classification for the systems. This generic classification is then compared to the views of sustainable development held by the fish farmers working on the various types of farms
An integrated fish-plankton aquaculture system in brackish water
Integrated Multi-Trophic Aquaculture takes advantage of the mutualism between some detritivorous fish and phytoplankton. The fish recycle nutrients by consuming live (and dead) algae and provide the inorganic carbon to fuel the growth of live algae. In the meanwhile, algae purify the water and generate the oxygen required by fishes. Such mechanism stabilizes the functioning of an artificially recycling ecosystem, as exemplified by combining the euryhaline tilapia Sarotherodon melanotheron heudelotii and the unicellular alga Chlorella sp. Feed addition in this ecosystem results in faster fish growth but also in an increase in phytoplankton biomass, which must be limited. In the prototype described here, the algal population control is exerted by herbivorous zooplankton growing in a separate pond connected in parallel to the fish-algae ecosystem. The zooplankton production is then consumed by tilapia, particularly by the fry and juveniles, when water is returned to the main circuit. Chlorella sp. and Brachionus plicatilis are two planktonic species that have spontaneously colonized the brackish water of the prototype, which was set-up in Senegal along the Atlantic Ocean shoreline. In our system, water was entirely recycled and only evaporation was compensated (1.5% volume/day). Sediment, which accumulated in the zooplankton pond, was the only trophic cul-de-sac. The system was temporarily destabilized following an accidental rotifer invasion in the main circuit. This caused Chlorella disappearance and replacement by opportunist algae, not consumed by Brachionus. Following the entire consumption of the Brachionus population by tilapias, Chlorella predominated again. Our artificial ecosystem combining S. m. heudelotii, Chlorella and B. plicatilis thus appeared to be resilient. This farming system was operated over one year with a fish productivity of 1.85 kg/m(2) per year during the cold season (January to April)