13,235 research outputs found

    Constraining Ω0{\Omega_{0}} from X-ray properties of Clusters of Galaxies at high redshift

    Full text link
    Properties of high redshift clusters are a fundamental source of information for cosmology. It has been shown by Oukbir and Blanchard (1997) that the combined knowledge of the redshift distribution of X-ray clusters of galaxies and the luminosity-temperature correlation, LX−TXL_X-T_X, provides a powerful test of the mean density of the Universe. In this paper, we address the question of the possible evolution of this relation from an observational point of view and its cosmological significance. We introduce a new indicator in order to measure the evolution of the X-ray luminosity-temperature relation with redshift and take advantage of the recent availability of temperature information for a significant number of high and intermediate redshift X-ray clusters of galaxies. From our analysis, we find a slightly positive evolution in the LX−TXL_X-T_X relation. This implies a high value of the density parameter of 0.85±0.20.85\pm0.2 . However, because the selection of clusters included inour sample is unknown, this can be considered only as a tentative result. A well-controlled X-ray selected survey would provide a more robust answer. XMM will be ideal for such a program.Comment: 10 pages, LaTeX, 4 figures,5 tables, accepted by A&

    STS-40 orbital acceleration research experiment flight results during a typical sleep period

    Get PDF
    The Orbital Acceleration Research Experiment (OARE), an electrostatic accelerometer package with complete on-orbit calibration capabilities, was flown for the first time aboard the Space Shuttle on STS-40. This is also the first time an accelerometer package with nano-g sensitivity and a calibration facility has flown aboard the Space Shuttle. The instrument is designed to measure and record the Space Shuttle aerodynamic acceleration environment from the free molecule flow regime through the rarified flow transition into the hypersonic continuum regime. Because of its sensitivity, the OARE instrument defects aerodynamic behavior of the Space Shuttle while in low-earth orbit. A 2-hour orbital time period on day seven of the mission, when the crew was asleep and other spacecraft activities were at a minimum, was examined. During the flight, a 'trimmed-mean' filter was used to produce high quality, low frequency data which was successfully stored aboard the Space Shuttle in the OARE data storage system. Initial review of the data indicated that, although the expected precision was achieved, some equipment problems occurred resulting in uncertain accuracy. An acceleration model which includes aerodynamic, gravity-gradient, and rotational effects was constructed and compared with flight data. Examination of the model with the flight data shows the instrument to be sensitive to all major expected low frequency acceleration phenomena; however, some erratic instrument bias behavior persists in two axes. In these axes, the OARE data can be made to match a comprehensive atmospheric-aerodynamic model by making bias adjustments and slight linear corrections for drift. The other axis does not exhibit these difficulties and gives good agreement with the acceleration model

    Time varying solar cycle protons program manual

    Get PDF
    Proton variations in earth radiation belt due to solar cycle - calculation program

    A New Local Temperature Distribution Function for X-ray Clusters: Cosmological Applications

    Get PDF
    (abridged) We present a new determination of the local temperature function of X-ray clusters. We use a new sample comprising fifty clusters for which temperature information is now available, making it the largest complete sample of its kind. It is therefore expected to significantly improve the estimation of the temperature distribution function of moderately hot clusters. We find that the resulting temperature function is higher than previous estimations, but agrees well with the temperature distribution function inferred from the BCS and RASS luminosity function. We have used this sample to constrain the amplitude of the matter fluctuations on cluster's scale of 8Ω03−1h−18\sqrt[3]{\Omega_0}^{-1}h^{-1}Mpc, assuming a mass-temperature relation based on recent numerical simulations. We find σ8=0.6±0.02\sigma_8 = 0.6\pm 0.02 for an Ω0=1\Omega_0 = 1 model. Our sample provides an ideal reference at z∼0z \sim 0 to use in the application of the cosmological test based on the evolution of X-ray cluster abundance (Oukbir & Blanchard 1992, 1997). Using Henry's sample, we find that the abundance of clusters at z=0.33z = 0.33 is significantly smaller, by a factor larger than 2, which shows that the EMSS sample provides strong evidence for evolution of the cluster abundance. A likelihood analysis leads to a rather high value of the mean density parameter of the universe: Ω=0.92±0.22\Omega =0.92 \pm 0.22 (open case) and Ω=0.86±0.25\Omega =0.86 \pm 0.25 (flat case), which is consistent with a previous, independent estimation based on the full EMSS sample by Sadat et al.(1998). Some systematic uncertainties which could alter this result are briefly discussed.Comment: 31 pages, 12 figures, mathches the version published in Astronomy and Astrophysic

    A Way Out of the Quantum Trap

    Get PDF
    We review Event Enhanced Quantum Theory (EEQT). In Section 1 we address the question "Is Quantum Theory the Last Word". In particular we respond to some of recent challenging staments of H.P. Stapp. We also discuss a possible future of the quantum paradigm - see also Section 5. In Section 2 we give a short sketch of EEQT. Examples are given in Section 3. Section 3.3 discusses a completely new phenomenon - chaos and fractal-like phenomena caused by a simultaneous "measurement" of several non-commuting observables (we include picture of Barnsley's IFS on unit sphere of a Hilbert space). In Section 4 we answer "Frequently Asked Questions" concerning EEQT.Comment: Replacement. Corrected affiliation. Latex, one .jpg figure. To appear in Proc. Conf. Relativistic Quantum Measurements, Napoli 1998, Ed. F. Petruccion

    Towards the origin of the radio emission in AR Sco, the first radio-pulsing white dwarf binary

    Full text link
    The binary system AR Sco contains an M star and the only known radio-pulsing white dwarf. The system shows emission from radio to X-rays, likely dominated by synchrotron radiation. The mechanism that produces most of this emission remains unclear. Two competing scenarios have been proposed: Collimated outflows, and direct interaction between the magnetospheres of the white dwarf and the M star. The two proposed scenarios can be tested via very long baseline interferometric radio observations. We conducted a radio observation with the Australian Long Baseline Array (LBA) on 20 Oct 2016 at 8.5 GHz to study the compactness of the radio emission. Simultaneous data with the Australian Telescope Compact Array (ATCA) were also recorded for a direct comparison of the obtained flux densities. AR Sco shows radio emission compact on milliarcsecond angular scales (≲0.02 AU\lesssim 0.02\ \mathrm{AU}, or $4\ \mathrm{R_{\odot}}).Theemissionisorbitallymodulated,withanaveragefluxdensityof). The emission is orbitally modulated, with an average flux density of \approx 6.5\ \mathrm{mJy}$. A comparison with the simultaneous ATCA data shows that no flux is resolved out on mas scales, implying that the radio emission is produced in this compact region. Additionally, the obtained radio light curves on hour timescales are consistent with the optical light curve. The radio emission in AR Sco is likely produced in the magnetosphere of the M star or the white dwarf, and we see no evidence for a radio outflow or collimated jets significantly contributing to the radio emission.Comment: 4 pages, 2 figures, accepted for publication in A&

    Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements

    Get PDF
    A procedure is presented for calculating 24-hour totals of evaporation from wet and drying soils. Its application requires a knowledge of the daily solar radiation, the maximum and minimum, air temperatures, moist surface albedo, and maximum and minimum surface temperatures. Tests of the technique on a bare field of Avondale loam at Phoenix, Arizona showed it to be independent of season

    Status of the tiger beetle Cicindela hirticollis Say (Coleoptera: Cicindelidae) in New York City and on Long Island, New York, USA

    Get PDF
    Coastal species are under considerable threat from recreational activities and climate change. The tiger beetle Cicindela hirticollis Say (Coleoptera: Cicindelidae) was recorded historically from 30 locations along the shores of New York City and Long Island, New York. We conducted surveys for extant populations of this species at 40 sites from 1989 to 2010. Adults of C. hirticollis were found at 13 beaches. Only four sites had 40 or more adults of C. hirticollis active at the time the beach was surveyed. No beetles were detected on the large coastal beaches that were formerly occupied by this species. Many coastal beaches of New York receive heavy human foot and vehicle traffic and are therefore unlikely to provide suitable habitat for C. hirticollis without a shift in beach management that recognizes the potential of some beaches as wilderness systems capable of supporting the full array of beach-dependent species

    Results of soil moisture flights during April 1974

    Get PDF
    The results presented here are derived from measurements made during the April 5 and 6, 1974 flights of the NASA P-3A aircraft over the Phoenix, Arizona agricultural test site. The purpose of the mission was to study the use of microwave techniques for the remote sensing of soil moisture. These results include infrared (10-to 12 micrometers) 2.8-cm and 21-cm brightness temperatures for approximately 90 bare fields. These brightness temperatures are compared with surface measurements of the soil moisture made at the time of the overflights. These data indicate that the combination of the sum and difference of the vertically and the horizontally polarized brightness temperatures yield information on both the soil moisture and surface roughness conditions
    • …
    corecore