10,147 research outputs found

    Determination of the hypersonic-continuum/rarefied-flow drag coefficient of the Viking lander capsule 1 aeroshell from flight data

    Get PDF
    Results of an investigation to determine the full scale drag coefficient in the high speed, low density regime of the Viking lander capsule 1 entry vehicle are presented. The principal flight data used in the study were from onboard pressure, mass spectrometer, and accelerometer instrumentation. The hypersonic continuum flow drag coefficient was unambiguously obtained from pressure and accelerometer data; the free molecule flow drag coefficient was indirectly estimated from accelerometer and mass spectrometer data; the slip flow drag coefficient variation was obtained from an appropriate scaling of existing experimental sphere data. Comparison of the flight derived drag hypersonic continuum flow regime except for Reynolds numbers from 1000 to 100,000, for which an unaccountable difference between flight and ground test data of about 8% existed. The flight derived drag coefficients in the free molecule flow regime were considerably larger than those previously calculated with classical theory. The general character of the previously determined temperature profile was not changed appreciably by the results of this investigation; however, a slightly more symmetrical temperature variation at the highest altitudes was obtained

    Operator normalized quantum arrival times in the presence of interactions

    Full text link
    We model ideal arrival-time measurements for free quantum particles and for particles subject to an external interaction by means of a narrow and weak absorbing potential. This approach is related to the operational approach of measuring the first photon emitted from a two-level atom illuminated by a laser. By operator-normalizing the resulting time-of-arrival distribution, a distribution is obtained which for freely moving particles not only recovers the axiomatically derived distribution of Kijowski for states with purely positive momenta but is also applicable to general momentum components. For particles interacting with a square barrier the mean arrival time and corresponding ``tunneling time'' obtained at the transmission side of the barrier becomes independent of the barrier width (Hartman effect) for arbitrarily wide barriers, i.e., without the transition to the ultra-opaque, classical-like regime dominated by wave packet components above the barrier.Comment: 10 pages, 5 figures, RevTe

    Field Measurements of Penetrator Seismic Coupling in Sediments and Volcanic Rocks

    Get PDF
    Field experiments were conducted to determine how well a seismometer installed using a penetrator would be coupled to the ground. A dry-lake bed and a lava bed were chosen as test sites to represent geological environments of two widely different material properties. At each site, two half-scale penetrators were fired into the ground, a three-component geophone assembly was mounted to the aft end of each penetrator, and dummy penetrators were at various distances to generate seismic signals. These signals were detected by the penetrator-mounted geophone assembly and by a reference geophone assembly buried or anchored to surface rock and 1-m from the penetrator. The recorded signals were digitized, and cross-spectral analyses were performed to compare the observed signals in terms of power spectral density ratio, coherence, and phase difference. The analyses indicate that seismometers deployed by penetrators will be as well coupled to the ground as are seismometers installed by conventional methods for the frequency range of interest in earthquake seismology

    Pauli's Theorem and Quantum Canonical Pairs: The Consistency Of a Bounded, Self-Adjoint Time Operator Canonically Conjugate to a Hamiltonian with Non-empty Point Spectrum

    Full text link
    In single Hilbert space, Pauli's well-known theorem implies that the existence of a self-adjoint time operator canonically conjugate to a given Hamiltonian signifies that the time operator and the Hamiltonian possess completely continuous spectra spanning the entire real line. Thus the conclusion that there exists no self-adjoint time operator conjugate to a semibounded or discrete Hamiltonian despite some well-known illustrative counterexamples. In this paper we evaluate Pauli's theorem against the single Hilbert space formulation of quantum mechanics, and consequently show the consistency of assuming a bounded, self-adjoint time operator canonically conjugate to a Hamiltonian with an unbounded, or semibounded, or finite point spectrum. We point out Pauli's implicit assumptions and show that they are not consistent in a single Hilbert space. We demonstrate our analysis by giving two explicit examples. Moreover, we clarify issues sorrounding the different solutions to the canonical commutation relations, and, consequently, expand the class of acceptable canonical pairs beyond the solutions required by Pauli's theorem.Comment: contains corrections to minor typographical errors of the published versio

    Radar cross calibration investigation TAMU radar polarimeter calibration measurements

    Get PDF
    A short pulse, 20 MHz bandwidth, three frequency radar polarimeter system (RPS) operates at center frequencies of 10.003 GHz, 4.75 GHz, and 1.6 GHz and utilizes dual polarized transmit and receive antennas for each frequency. The basic lay-out of the RPS is different from other truck mounted systems in that it uses a pulse compression IF section common to all three RF heads. Separate transmit and receive antennas are used to improve the cross-polarization isolation at each particular frequency. The receive is a digitally controlled gain modulated subsystem and is interfaced directly with a microprocesser computer for control and data manipulation. Antenna focusing distance, focusing each antenna pair, rf head stability, and polarization characteristics of RPS antennas are discussed. Platform and data acquisition procedures are described

    The Expected Mass Function for Low Mass Galaxies in a CDM Cosmology: Is There a Problem?

    Full text link
    It is well known that the mass function for_halos_ in CDM cosmology is a relatively steep power law for low masses, possibly too steep to be consistent with observations. But how steep is the_galaxy_ mass function? We have analyzed the stellar and gas mass functions of the first massive luminous objects formed in a \Lambda CDM universe, as calculated in the numerical simulation described in Gnedin (2000ab). We found that while the dark matter mass function is steep, the stellar and gas mass functions are flatter for low mass objects. The stellar mass function is consistently flat at the low mass end. Moreover, while the gas mass function follows the dark matter mass function until reionization at z~7, between z=7 and z=4, the gas mass function also flattens considerably at the low mass end. At z=4, the gas and stellar mass functions are fit by a Schechter function with \alpha ~ -1.2 +/- 0.1, significantly shallower than the dark matter halo mass function and consistent with some recent observations. The baryonic mass functions are shallower because (a) the dark matter halo mass function is consistent with the Press-Schechter formulation at low masses n(M) M^-2 and (b) heating/cooling and ionization processes appear to cause baryons to collect in halos with the relationship M_b M_d^4 at low masses. Combining (a) and (b) gives n(M_b) M_b^-5/4, comparable to the simulation results. Thus, the well known observational fact that low mass galaxies are underabundant as compared to expectations from numerical dark matter simulations or Press-Schechter modeling of CDM universes emerges naturally from these results, implying that perhaps no ``new physics'' beyond the standard model is needed.Comment: Submitted to ApJ, 17 pages including 6 figure

    On Quantum Jumps, Events and Spontaneous Localization Models

    Get PDF
    We propose a definite meaning to the concepts of "experiment", "measurement" and "event" in the event-enhanced formalism of quantum theory. A minimal piecewise deterministic process is given that can be used for a computer simulation of real time series of experiments on single quantum objects. As an example a generalized cloud chamber is described, including multiparticle case. Relation to the GRW spontaneous localization model is discussed. The second revised version of the paper contains references to papers by other authors that are are aiming in the same direction: to enhance quantum theory in such a way that it will provide stochastic description of events triggered by individual quantum systems.Comment: 20 page

    Self-Assembled Monolayers prepared from alkanethiols or dialkyl disulfides on Au: evidence of influence of the anchoring group

    Get PDF
    Mainly based on electrochemical investigations, this work provides evidence of discrimination between self-assembled monolayers (SAMs) prepared from alkanethiols or symmetrical dialkyl disulfides on gold. Gravimetric experiments carried out by quartz crystal microbalance during the elaboration of ferrocene based SAMs (from alkanethiols FcC15SH and dialkyl disulfides FcC15SSC15Fc), showed significant differences between monolayers made from the two precursors. The recorded mass was almost 60 % more important with FcC15SH by comparison with FcC15SSC15Fc. The resulting cyclic voltammograms also highlighted a 60 % difference concerning the surface coverage of ferrocene heads. Moreover, dialkyl disulfide and thiol anchoring groups led to symmetrical and dissymmetrical peaks, respectively, suggesting not insignificant differences concerning interactions between adsorbed species into the two kinds of elaborated monolayers. These observations were confirmed on SAMs obtained from other precursors possessing shorter chain length or another functional moiety

    Space capsule Patent

    Get PDF
    Manned space capsule configuration for orbital flight and atmospheric reentr

    Intrinsic susceptibility and bond defects in the novel 2D frustrated antiferromagnet Ba2_{2}Sn2_{2}ZnCr7p_{7p}Ga10−7p_{10-7p}O22_{22}

    Get PDF
    We present microscopic and macroscopic magnetic properties of the highly frustrated antiferromagnet Ba2_{2}Sn2_{2}ZnCr7p_{7p}Ga10−7p_{10-7p}O22_{22}, respectively probed with NMR and SQUID experiments. The TT-variation of the intrinsic susceptibility of the Cr3+^{3+} frustrated kagom\'{e} bilayer, χkag\chi_{kag}, displays a maximum around 45 K. The dilution of the magnetic lattice has been studied in detail for 0.29≤p≤0.970.29 \leq p \leq0.97. Novel dilution independent defects, likely related with magnetic bond disorder, are evidenced and discussed. We compare our results to SrCr9p_{9p}Ga12−9p_{12-9p}O19_{19}. Both bond defects and spin vacancies do not affect the average susceptibility of the kagom\'{e} bilayers.Comment: Published in Phys. Rev. Lett. 92, 217202 (2004). Only minor changes as compared to previous version. 4 pages, 4 figure
    • …
    corecore