7,872 research outputs found
Problems associated with operations and measurement in cryogenic wind tunnels
Cryogenic wind tunnel T'3 under continuous blower operation has been the object of improvements and the installation of auxiliary equipment, dealing in particular with the enlargement of the liquid nitrogen injection reservoir and the hook-up to a fast data acquisition system. Following a brief description of the installation and its functioning, we present the main experimental techniques and the instrumentation used in the cryogenic environment
59Co NMR study of the Co states in superconducting and anhydrous cobaltates
Co NMR spectra in oriented powders of NaCoO and in its
hydrated superconducting phase (HSC) NaCoO,1.3HO reveal a
single electronic Co state with identical independent NMR shift tensor.
These phases differ markedly from NaCoO, in which we resolve 3
types of Co sites. The large T variation of their spin susceptibilities and the anisotropy of the orbital susceptibility allow us
to conclude that charge disproportionation occurs, in a non magnetic Co
and two magnetic sites with about 0.3 and 0.7 holes in the multiplet.
The data are consistent with those for the single Co site in the anhydrous and
HSC phase assuming the expected Co charge.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let
A Way Out of the Quantum Trap
We review Event Enhanced Quantum Theory (EEQT). In Section 1 we address the
question "Is Quantum Theory the Last Word". In particular we respond to some of
recent challenging staments of H.P. Stapp. We also discuss a possible future of
the quantum paradigm - see also Section 5. In Section 2 we give a short sketch
of EEQT. Examples are given in Section 3. Section 3.3 discusses a completely
new phenomenon - chaos and fractal-like phenomena caused by a simultaneous
"measurement" of several non-commuting observables (we include picture of
Barnsley's IFS on unit sphere of a Hilbert space). In Section 4 we answer
"Frequently Asked Questions" concerning EEQT.Comment: Replacement. Corrected affiliation. Latex, one .jpg figure. To appear
in Proc. Conf. Relativistic Quantum Measurements, Napoli 1998, Ed. F.
Petruccion
Program schemes with deep pushdown storage.
Inspired by recent work of Meduna on deep pushdown automata, we consider the computational power of a class of basic program schemes, TeX, based around assignments, while-loops and non- deterministic guessing but with access to a deep pushdown stack which, apart from having the usual push and pop instructions, also has deep-push instructions which allow elements to be pushed to stack locations deep within the stack. We syntactically define sub-classes of TeX by restricting the occurrences of pops, pushes and deep-pushes and capture the complexity classes NP and PSPACE. Furthermore, we show that all problems accepted by program schemes of TeX are in EXPTIME
Preliminary results of penetrator field test program, Tonopah, Nevada, 16-28 April 1979
Subscale (0.63 scale) penetrators impacted various sizes of volcanic rocks resting on and within compacted plays sediments. All penetrators were identical in size, shape, weight, and impact velocity. Although minor variations in impact angle were documented, the final orientation of the buried penetrators was primarily a consequence of the size, shape, and depth of the rocks encountered during impact. In situ measurements of impacted penetrators revealed that surface and buried layers of rocks having diameters up to 3 times the penetrator diameter caused only small ( 10 deg) angles of deflection. Only large single rocks greater than 10 times the penetrator diameter caused deflections appreciably greater than 10 deg. The large deflection angles followed by the penetrator were strongly influenced by fracture planes that developed in the rock as it broke apart. No catastrophic failure of the penetrator occurred during these tests. A cross section of the path of each penetrator through the ground is shown together with details on orientation before, during, and after the tests. Comparisons are made with results of previous subscale penetrator tests, and conclusions are drawn with respect to full-scale Mars penetrator performance
Cross-Correlating Cosmic Microwave Background Radiation Fluctuations with Redshift Surveys: Detecting the Signature of Gravitational Lensing
Density inhomogeneities along the line-of-sight distort fluctuations in the
cosmic microwave background. Usually, this effect is thought of as a small
second-order effect that mildly alters the statistics of the microwave
background fluctuations. We show that there is a first-order effect that is
potentially observable if we combine microwave background maps with large
redshift surveys. We introduce a new quantity that measures this lensing
effect, , where T is the microwave
background temperature and is the lensing due to matter in the
region probed by the redshift survey. We show that the expected signal is first
order in the gravitational lensing bending angle, , and find that it should be easily detectable, (S/N) 15-35, if
we combine the Microwave Anisotropy Probe satellite and Sloan Digital Sky
Survey data. Measurements of this cross-correlation will directly probe the
``bias'' factor, the relationship between fluctuations in mass and fluctuations
in galaxy counts.Comment: 13 pages, 4 postscript figures included; Uses aaspp4.sty (AASTeX
v4.0); Accepted for publication in Astrophysical Journal, Part
Field Measurements of Penetrator Seismic Coupling in Sediments and Volcanic Rocks
Field experiments were conducted to determine how well a seismometer installed using a penetrator would be coupled to the ground. A dry-lake bed and a lava bed were chosen as test sites to represent geological environments of two widely different material properties. At each site, two half-scale penetrators were fired into the ground, a three-component geophone assembly was mounted to the aft end of each penetrator, and dummy penetrators were at various distances to generate seismic signals. These signals were detected by the penetrator-mounted geophone assembly and by a reference geophone assembly buried or anchored to surface rock and 1-m from the penetrator. The recorded signals were digitized, and cross-spectral analyses were performed to compare the observed signals in terms of power spectral density ratio, coherence, and phase difference. The analyses indicate that seismometers deployed by penetrators will be as well coupled to the ground as are seismometers installed by conventional methods for the frequency range of interest in earthquake seismology
Analytic Examples, Measurement Models and Classical Limit of Quantum Backflow
We investigate the backflow effect in elementary quantum mechanics - the
phenomenon in which a state consisting entirely of positive momenta may have
negative current and the probability flows in the opposite direction to the
momentum. We compute the current and flux for states consisting of
superpositions of gaussian wave packets. These are experimentally realizable
but the amount of backflow is small. Inspired by the numerical results of Penz
et al (M.Penz, G.Gr\"ubl, S.Kreidl and P.Wagner, J.Phys. A39, 423 (2006)), we
find two non-trivial wave functions whose current at any time may be computed
analytically and which have periods of significant backflow, in one case with a
backwards flux equal to about 70 percent of the maximum possible backflow, a
dimensionless number , discovered by Bracken and Melloy
(A.J.Bracken and G.F.Melloy, J.Phys. A27, 2197 (1994)). This number has the
unusual property of being independent of (and also of all other
parameters of the model), despite corresponding to an obviously
quantum-mechanical effect, and we shed some light on this surprising property
by considering the classical limit of backflow. We discuss some specific
measurement models in which backflow may be identified in certain measurable
probabilities.Comment: 33 pages, 14 figures. Minor revisions. Published versio
- …