680 research outputs found
Long-lived heteronuclear spin-singlet states
We report observation of long-lived spin-singlet states in a 13C-1H spin pair
at zero magnetic field. In 13C-labeled formic acid, we observe spin-singlet
lifetimes as long as 37 seconds, about a factor of three longer than the T1
lifetime of dipole polarization in the triplet state. We also observe that the
lifetime of the singlet-triplet coherence, T2, is longer than T1. Moreover, we
demonstrate that this singlet states formed by spins of a heteronucleus and a
1H nucleus, can exhibit longer lifetimes than the respective triplet states in
systems consisting of more than two nuclear spins. Although long-lived
homonuclear spin-singlet states have been extensively studied, this is the
first experimental observation of analogous spin-singlets consisting of a
heteronucleus and a proton.Comment: 5 pages, 4 figure
Measurement of Untruncated Nuclear Spin Interactions via Zero- to Ultra-Low-Field Nuclear Magnetic Resonance
Zero- to ultra-low-field nuclear magnetic resonance (ZULF NMR) provides a new
regime for the measurement of nuclear spin-spin interactions free from effects
of large magnetic fields, such as truncation of terms that do not commute with
the Zeeman Hamiltonian. One such interaction, the magnetic dipole-dipole
coupling, is a valuable source of spatial information in NMR, though many terms
are unobservable in high-field NMR, and the coupling averages to zero under
isotropic molecular tumbling. Under partial alignment, this information is
retained in the form of so-called residual dipolar couplings. We report zero-
to ultra-low-field NMR measurements of residual dipolar couplings in
acetonitrile-2-C aligned in stretched polyvinyl acetate gels. This
represents the first investigation of dipolar couplings as a perturbation on
the indirect spin-spin -coupling in the absence of an applied magnetic
field. As a consequence of working at zero magnetic field, we observe terms of
the dipole-dipole coupling Hamiltonian that are invisible in conventional
high-field NMR. This technique expands the capabilities of zero- to
ultra-low-field NMR and has potential applications in precision measurement of
subtle physical interactions, chemical analysis, and characterization of local
mesoscale structure in materials.Comment: 6 pages, 3 figure
Towards large-scale steady-state enhanced nuclear magnetization with in situ detection
Signal amplification by reversible exchange (SABRE) boosts NMR signals of various nuclei enabling new applications spanning from magnetic resonance imaging to analytical chemistry and fundamental physics. SABRE is especially well positioned for continuous generation of enhanced magnetization on a large scale; however, several challenges need to be addressed for accomplishing this goal. Specifically, SABRE requires (i) a specialized catalyst capable of reversible H2 activation and (ii) physical transfer of the sample from the point of magnetization generation to the point of detection (e.g., a high-field or a benchtop nuclear magnetic resonance [NMR] spectrometer). Moreover, (iii) continuous parahydrogen bubbling accelerates solvent (e.g., methanol) evaporation, thereby limiting the experimental window to tens of minutes per sample. In this work, we demonstrate a strategy to rapidly generate the best-to-date precatalyst (a compound that is chemically modified in the course of the reaction to yield the catalyst) for SABRE, [Ir(IMes)(COD)Cl] (IMes = 1,3-bis-[2,4,6-trimethylphenyl]-imidazol-2-ylidene; COD = cyclooctadiene) via a highly accessible synthesis. Second, we measure hyperpolarized samples using a home-built zero-field NMR spectrometer and study the field dependence of hyperpolarization directly in the detection apparatus, eliminating the need to physically move the sample during the experiment. Finally, we prolong the measurement time and reduce evaporation by presaturating parahydrogen with the solvent vapor before bubbling into the sample. These advancements extend opportunities for exploring SABRE hyperpolarization by researchers from various fields and pave the way to producing large quantities of hyperpolarized material for long-lasting detection of SABRE-derived nuclear magnetization
Nondestructive in-line sub-picomolar detection of magnetic nanoparticles in flowing complex fluids
Over the last decades, the use of magnetic nanoparticles in research and
commercial applications has increased dramatically. However, direct detection
of trace quantities remains a challenge in terms of equipment cost, operating
conditions and data acquisition times, especially in flowing conditions within
complex media. Here we present the in-line, non-destructive detection of
magnetic nanoparticles using high performance atomic magnetometers at ambient
conditions in flowing media. We achieve sub-picomolar sensitivities measuring
30 nm ferromagnetic iron and cobalt nanoparticles that are suitable for
biomedical and industrial applications, under flowing conditions in water and
whole blood. Additionally, we demonstrate real-time surveillance of the
magnetic separation of nanoparticles from water and whole blood. Overall our
system has the merit of inline direct measurement of trace quantities of
ferromagnetic nanoparticles with so far unreached sensitivities and could be
applied in the biomedical field (diagnostics and therapeutics) but also in the
industrial sector
Chemical reaction monitoring using zero-field nuclear magnetic resonance enables study of heterogeneous samples in metal containers
We demonstrate that heterogeneous/biphasic chemical reactions can be monitored with high spectroscopic resolution using zero-field nuclear magnetic resonance spectroscopy. This is possible because magnetic susceptibility broadening is negligible at ultralow magnetic fields. We show the two-step hydrogenation of dimethyl acetylenedicarboxylate with para-enriched hydrogen gas in conventional glass NMR tubes, as well as in a titanium tube. The low frequency zero-field NMR signals ensure that there is no significant signal attenuation arising from shielding by the electrically conductive sample container. This method paves the way for in situ monitoring of reactions in complex heterogeneous multiphase systems and in reactors made of conductive materials while maintaining resolution and chemical specificity
Quantum Diamond Microscope for Dynamic Imaging of Magnetic Fields
Wide-field imaging of magnetic signals using ensembles of nitrogen-vacancy
(NV) centers in diamond has garnered increasing interest due to its combination
of micron-scale resolution, millimeter-scale field of view, and compatibility
with diverse samples from across the physical and life sciences. Recently,
wide-field NV magnetic imaging based on the Ramsey protocol has achieved
uniform and enhanced sensitivity compared to conventional measurements. Here,
we integrate the Ramsey-based protocol with spin-bath driving to extend the NV
spin dephasing time and improve magnetic sensitivity. We also employ a
high-speed camera to enable dynamic wide-field magnetic imaging. We benchmark
the utility of this quantum diamond microscope (QDM) by imaging magnetic fields
produced from a fabricated wire phantom. Over a field of view, a median per-pixel
magnetic sensitivity of
is realized with a
spatial resolution
and
sub-millisecond temporal resolution. Importantly, the spatial magnetic noise
floor can be reduced to the picotesla scale by time-averaging and signal
modulation, which enables imaging of a magnetic-field pattern with a
peak-to-peak amplitude difference of about .
Finally, we discuss potential new applications of this dynamic QDM in studying
biomineralization and electrically-active cells.Comment: 18 Pages, 13 figure
Possible Applications of Dissolution Dynamic Nuclear Polarization in Conjunction with Zero- to Ultralow-Field Nuclear Magnetic Resonance
The combination of a powerful and broadly applicable nuclear
hyperpolarization technique with emerging (near-)zero-field modalities offer
novel opportunities in a broad range of nuclear magnetic resonance spectroscopy
and imaging applications, including biomedical diagnostics, monitoring
catalytic reactions within metal reactors and many others. These are discussed
along with a roadmap for future developments.Comment: 12 pages, 5 figure
Can Inhibitor-Resistant Substitutions in The Mycobacterium Tuberculosis β-Lactamase BlaC Lead to Clavulanate Resistance?: A Biochemical Rationale for The Use of β-Lactam–β-Lactamase Inhibitor Combinations
The current emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis calls for novel treatment strategies. Recently, BlaC, the principal β-lactamase of Mycobacterium tuberculosis, was recognized as a potential therapeutic target. The combination of meropenem and clavulanic acid, which inhibits BlaC, was found to be effective against even extensively drug-resistant M. tuberculosis strains when tested in vitro. Yet there is significant concern that drug resistance against this combination will also emerge. To investigate the potential of BlaC to evolve variants resistant to clavulanic acid, we introduced substitutions at important amino acid residues of M. tuberculosis BlaC (R220, A244, S130, and T237). Whereas the substitutions clearly led to in vitro clavulanic acid resistance in enzymatic assays but at the expense of catalytic activity, transformation of variant BlaCs into an M. tuberculosis H37Rv background revealed that impaired inhibition of BlaC did not affect inhibition of growth in the presence of ampicillin and clavulanate. From these data we propose that resistance to β-lactam–β-lactamase inhibitor combinations will likely not arise from structural alteration of BlaC, therefore establishing confidence that this therapeutic modality can be part of a successful treatment regimen against M. tuberculosis
- …