106 research outputs found
Limits to the diffuse flux of UHE tau neutrinos at EeV energies from the Pierre Auger Observatory
With the Pierre Auger Observatory we have the capability of detecting
ultra-high energy neutrinos by searching for very inclined showers with a
significant electromagnetic component. In this work we discuss the
discrimination power of the instrument for earth skimming tau neutrinos with
ultra-high energies. Based on the data collected since January 2004 an upper
limit to the diffuse flux of neutrinos atEeV energies is presented and
systematic uncertainties are discussed.Comment: To be published in Proceedings of the 30th International Cosmic Ray
Conference, July 3 - 11, 2007, Merida, Yucatan, Mexico. 4 pages, 5 figure
Ultra High Energy neutrinos with the Pierre Auger Observatory
texte intégral disponible sur http://proc.sf2a.asso.fr/2006/2006sf2a.conf..0115B.pdfInternational audienceThe Pierre Auger Observatory was designed to observe cosmic rays of ultra-high energy. It has also the capability to observe rare neutrino-induced showers. An evaluation of the sensitivity of the Surface Detector is presented and a procedure to discriminate them from the background is described
Progress in Monte Carlo design and optimization of the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) will be an instrument covering a wide
energy range in very-high-energy (VHE) gamma rays. CTA will include several
types of telescopes, in order to optimize the performance over the whole energy
range. Both large-scale Monte Carlo (MC) simulations of CTA super-sets
(including many different possible CTA layouts as sub-sets) and smaller-scale
simulations dedicated to individual aspects were carried out and are on-going.
We summarize results of the prior round of large-scale simulations, show where
the design has now evolved beyond the conservative assumptions of the prior
round and present first results from the on-going new round of MC simulations.Comment: 4 pages, 5 figures. In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at
arXiv:1307.223
NectarCAM : a camera for the medium size telescopes of the Cherenkov Telescope Array
NectarCAM is a camera proposed for the medium-sized telescopes of the
Cherenkov Telescope Array (CTA) covering the central energy range of ~100 GeV
to ~30 TeV. It has a modular design and is based on the NECTAr chip, at the
heart of which is a GHz sampling Switched Capacitor Array and a 12-bit Analog
to Digital converter. The camera will be equipped with 265 7-photomultiplier
modules, covering a field of view of 8 degrees. Each module includes the
photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and
Ethernet transceiver. The recorded events last between a few nanoseconds and
tens of nanoseconds. The camera trigger will be flexible so as to minimize the
read-out dead-time of the NECTAr chips. NectarCAM is designed to sustain a data
rate of more than 4 kHz with less than 5\% dead time. The camera concept, the
design and tests of the various subcomponents and results of thermal and
electrical prototypes are presented. The design includes the mechanical
structure, cooling of the electronics, read-out, clock distribution, slow
control, data-acquisition, triggering, monitoring and services.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
Progress in Monte Carlo design and optimization of the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) will be an instrument covering a wide energy range in very-high-energy (VHE) gamma rays. CTA will include several types of telescopes, in order to optimize the performance over the whole energy range. Both large-scale Monte Carlo (MC) simulations of CTA super-sets (including many different possible CTA layouts as sub-sets) and smaller-scale simulations dedicated to individual aspects were carried out and are on-going. We summarize results of the prior round of large-scale simulations, show where the design has now evolved beyond the conservative assumptions of the prior round and present first results from the on-going new round of MC simulations.Fil: Bernlöhr, K.. Max-Planck-Institut fur Kernphysik; AlemaniaFil: Barnacka, A.. Polish Academy of Sciences; ArgentinaFil: Becherini, Y.. Ăcole Polytechnique; FranciaFil: Blanch Bigas, O.. IFAE; EspañaFil: Bouvier, A.. University of California; Estados UnidosFil: Carmona, E.. Max-Planck-Institut fur Physik; AlemaniaFil: Colin, P.. Max-Planck-Institut fur Physik; AlemaniaFil: Decerprit, G.. DESY; AlemaniaFil: di Pierro, F.. Osservatorio Astrofisico di Torino dellâIstituto Nazionale di Astrofisica; ItaliaFil: Dubois, F.. Universidad Complutense de Madrid; EspañaFil: Farnier, C.. Stockholm University; SueciaFil: Funk, S.. Kavli Institute for Particle Astrophysics and Cosmology; Estados UnidosFil: Hermann, G.. Max-Planck-Institut fur Kernphysik; AlemaniaFil: Hinton, J. A.. The University of Leicester; Reino UnidoFil: Humensky, T. B.. Columbia University; Estados UnidosFil: Jogler, T.. Kavli Institute for Particle Astrophysics and Cosmology; Estados UnidosFil: KhĂ©lifi, B.. Ăcole Polytechnique; FranciaFil: Kihm, T.. Max-Planck-Institut fur Kernphysik; AlemaniaFil: Komin, N.. Universite de Savoie; FranciaFil: Lenain, J. -P.. UniversitĂ© Denis Diderot Paris 7; FranciaFil: LĂłpez Coto, R.. IFAE; EspañaFil: Maier, G.. DESY; AlemaniaFil: Mazin, D.. Max-Planck-Institut fur Physik; AlemaniaFil: Medina, Maria Clementina. Provincia de Buenos Aires. GobernaciĂłn. ComisiĂłn de Investigaciones CientĂficas. Instituto Argentino de RadioastronomĂa. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - La Plata. Instituto Argentino de RadioastronomĂa; ArgentinaFil: Moralejo, A.. IFAE; EspañaFil: Moderski, R.. Polish Academy of Sciences; ArgentinaFil: Nolan, S. J.. Durham University; Reino UnidoFil: Ohm, S.. The University of Leicester; Reino UnidoFil: de Oña Wilhelmi, E.. Max-Planck-Institut fur Kernphysik; Alemania33rd International Cosmic Ray ConferenceRĂo de JaneiroBrasilBrazilian Physical Societ
The Cherenkov Telescope Array Large Size Telescope
The two arrays of the Very High Energy gamma-ray observatory Cherenkov
Telescope Array (CTA) will include four Large Size Telescopes (LSTs) each with
a 23 m diameter dish and 28 m focal distance. These telescopes will enable CTA
to achieve a low-energy threshold of 20 GeV, which is critical for important
studies in astrophysics, astroparticle physics and cosmology. This work
presents the key specifications and performance of the current LST design in
the light of the CTA scientific objectives.Comment: 4 pages, 5 figures, In Proceedings of the 33rd International Cosmic
Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at
arXiv:1307.223
- âŠ