57 research outputs found

    An investigation into the use of the Deprivation of Liberty Safeguards with people with intellectual disabilities

    Get PDF
    Background: This small, qualitative study sought to develop a richer understanding of the way in which the deprivation of liberty safeguards (DOLS) were being used for people with intellectual disabilities. It is important to note that this study was completed prior to the changes resulting from the P v Cheshire West and Chester Council judgement. Method: Six DOLS cases were identified and two people involved in each case were interviewed (care home managers, key workers, social workers, specialist nurses or psychologists), using semi-structured interviews. The data were analysed using grounded theory techniques. Results: The interviewees described DOLS as providing a framework leading to positive outcomes for the people they supported, in some cases avoiding inpatient stays. However, they had a number of concerns including lack of knowledge and training, potential under use of DOLS and disappointment with case law. Conclusion: Overall, these findings are encouraging in regard to the specific individuals for whom DOLS applications were made; however, they also highlight the need for a stronger agenda regarding wider dissemination of information, and training about DOLS, as well as some reform

    Multiscale mechanisms of nutritionally induced property variation in spider silks.

    Full text link
    Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider's silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk's alanine and proline compositions influenced the alignment of the proteins within the silk's amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers

    The journey travelled – A view of two settings a decade apart

    Get PDF
    Inclusion is generally recognized as an ongoing, active process which reflects shifts in policies, practice and values as well as political choices made over long periods of time. Although intended as a transformative concept it can also represent a messy compromise between congealed policy positions and contradictory practices. Against this background of compromise and dissatisfaction, this study aims to examine how two schools with clear inclusive aspirations and intentions have weathered the last decade. Drawing upon two research visits ten years apart in which the schools were filmed and members of the school community were interviewed, this study reports on their perception of the journey travelled. Data from the study shows that in both cases there was a shift away from practices which were previously seen as being a route towards greater inclusion. The causes for these shifts were political, economic and social factors underpinned by the pervasive influence of the special education and medical model on the two schools’ practice and principles

    Conservation of a pH-sensitive structure in the C-terminal region of spider silk extends across the entire silk gene family

    Get PDF
    Spiders produce multiple silks with different physical properties that allow them to occupy a diverse range of ecological niches, including the underwater environment. Despite this functional diversity, past molecular analyses show a high degree of amino acid sequence similarity between C-terminal regions of silk genes that appear to be independent of the physical properties of the resulting silks; instead, this domain is crucial to the formation of silk fibres. Here we present an analysis of the C-terminal domain of all known types of spider silk and include silk sequences from the spider Argyroneta aquatica, which spins the majority of its silk underwater. Our work indicates that spiders have retained a highly conserved mechanism of silk assembly, despite the extraordinary diversification of species, silk types and applications of silk over 350 million years. Sequence analysis of the silk C-terminal domain across the entire gene family shows the conservation of two uncommon amino acids that are implicated in the formation of a salt bridge, a functional bond essential to protein assembly. This conservation extends to the novel sequences isolated from A. aquatica. This finding is relevant to research regarding the artificial synthesis of spider silk, suggesting that synthesis of all silk types will be possible using a single process

    Mobilising Knowledge through Global Partnerships to Support Research-informed Teaching: Five Models for Translational Research

    Get PDF
    Education Futures Collaboration Charity The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Improving the quality of teaching is of global concern: UNESCO’s Sustainable Development Goal (SDG) 4c in the Education 2030: Framework for Action calls for high quality teaching for all. The OECD challenges the education system to improve Knowledge Management. JET’s (2015) special issue: Translational Research (TR) and Knowledge Mobilisation in Teacher Education introduced the concept of ‘translational’ or ‘theory to practice’ research - well-established in medicine but not in education. Five TR models were subsequently developed by the MESH charity’s international network with organisations in South Africa, Bangladesh, Australia, Pakistan, UK. These distinct models engage 1) university staff and teachers 2) subject associations, 3) research units, 4) an international NGO working in crisis settings, 5) PhD tutors and students. Each model shares common features forming the MESH Translational Research methodology introduced in this article. A TR repository is part of the MESH knowledge mobilisation strategy giving teachers access to research summaries which, overtime, accumulate knowledge. TR publications called MESHGuides (www.meshguides.org) complement existing forms of publication. This article proposes the MESH TR methodology as one affordable and scalable solution to OECD and UNESCO’s challenges of keeping teachers up-to-date and making new knowledge accessible to teachers regardless of location

    1000 spider silkomes: linking sequences to silk physical properties

    Get PDF
    Spider silks are among the toughest known materials and thus provide models for renewable, biodegradable, and sustainable biopolymers. However, the entirety of their diversity still remains elusive, and silks that exceed the performance limits of industrial fibers are constantly being found. We obtained transcriptome assemblies from 1098 species of spiders to comprehensively catalog silk gene sequences and measured the mechanical, thermal, structural, and hydration properties of the dragline silks of 446 species. The combination of these silk protein genotype-phenotype data revealed essential contributions of multicomponent structures with major ampullate spidroin 1 to 3 paralogs in high-performance dragline silks and numerous amino acid motifs contributing to each of the measured properties. We hope that our global sampling, comprehensive testing, integrated analysis, and open data will provide a solid starting point for future biomaterial designs
    corecore